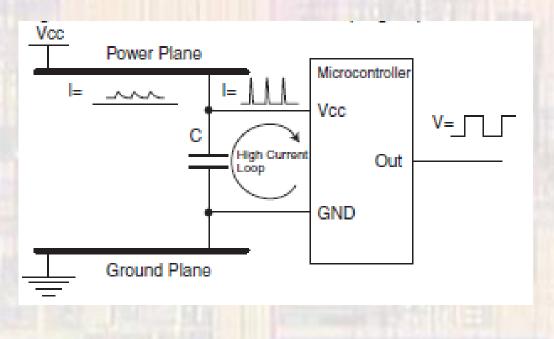

# Power and Power Distribution

# Last updated 1/9/24

- DC Power
  - Essentially all digital systems run on DC power internally
    - I can't think of any that run on AC but all is a hard statement
  - Even DC power solutions vary over time
    - Batteries run down
  - AC power solutions need to be converted to DC

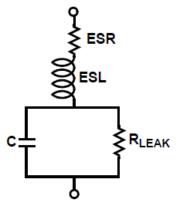
 $\rightarrow$  Voltage regulation

- DC Power Voltage Regulation
  - Super simple voltage regulator




- DC Power Voltage Regulation
  - Parametrics
    - Output Voltage
      - Fixed for a given regulator
    - Line Regulation
      - Variation in the output voltage (%)
    - Input Voltage
      - Maximum input voltage level
    - Output Current
      - Max current to load
    - Dropout Voltage
      - Minimum input voltage level ABOVE the specified output voltage

| Symbol              | Parameter                       | Test condition                                                                                                                                              | Min.  | Тур.  | Max.  | Unit |  |
|---------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|------|--|
| Vo                  | Output voltage                  | V <sub>in</sub> = 3.2 V, I <sub>O</sub> = 10 mA, T <sub>J</sub> = 25 °C                                                                                     | 1.188 | 1.20  | 1.212 | V    |  |
| vo                  | Output voltage                  | I <sub>O</sub> = 10 to 800 mA<br>V <sub>in</sub> - V <sub>O</sub> = 1.4 to 10 V                                                                             | 1.140 | 1.20  | 1.260 | v    |  |
| $\Delta V_{O}$      | Line regulation                 | $V_{in}$ - $V_O$ = 1.5 to 13.75 V, $I_O$ = 10 mA                                                                                                            |       | 0.035 | 0.2   | %    |  |
| $\Delta V_{O}$      | Load regulation                 | $V_{in} - V_O = 3 V$ , $I_O = 10 \text{ to } 800 \text{ mA}$                                                                                                |       | 0.1   | 0.4   | %    |  |
| $\Delta V_{O}$      | Temperature stability           |                                                                                                                                                             |       | 0.5   |       | %    |  |
| $\Delta V_{O}$      | Long term stability             | 1000 hrs, T <sub>J</sub> = 125 °C                                                                                                                           |       | 0.3   |       | %    |  |
| Vin                 | Operating input voltage         |                                                                                                                                                             |       |       | 15    | V    |  |
| l <sub>adj</sub>    | Adjustment pin current          | V <sub>in</sub> ≤ 15 V                                                                                                                                      |       | 60    | 120   | μA   |  |
| $\Delta I_{adj}$    | Adjustment pin current change   | V <sub>in</sub> - V <sub>O</sub> = 1.4 to 10 V<br>I <sub>O</sub> = 10 to 800 mA                                                                             |       | 1     | 5     | μA   |  |
| I <sub>O(min)</sub> | Minimum load current            | V <sub>in</sub> = 15 V                                                                                                                                      |       | 2     | 5     | mA   |  |
| I <sub>O</sub>      | Output current                  | V <sub>in</sub> - V <sub>O</sub> = 5 V, T <sub>J</sub> = 25 °C                                                                                              | 800   | 950   | 1300  | mA   |  |
| eN                  | Output noise (%V <sub>O</sub> ) | B = 10 Hz to 10 kHz, T <sub>J</sub> = 25 °C                                                                                                                 |       | 0.003 |       | %    |  |
| SVR                 | Supply voltage rejection        | $\begin{array}{l} I_O = 40 \text{ mA, } f = 120 \text{ Hz, } T_J = 25 \ ^\circ\text{C} \\ V_{in} - V_O = 3 \text{ V, } V_{ripple} = 1 \ V_{PP} \end{array}$ | 60    | 75    |       | dB   |  |
| V <sub>d</sub>      | Dropout voltage                 | I <sub>O</sub> = 100 mA                                                                                                                                     |       | 1     | 1.1   | v    |  |
|                     |                                 | I <sub>O</sub> = 500 mA                                                                                                                                     |       | 1.05  | 1.15  |      |  |
|                     |                                 | I <sub>O</sub> = 800 mA                                                                                                                                     |       | 1.10  | 1.2   |      |  |
|                     | Thermal regulation              | T <sub>a</sub> = 25 °C, 30 ms Pulse                                                                                                                         |       | 0.01  | 0.1   | %/W  |  |


- DC Power Supply Bypassing
  - Digital circuits create current spikes on the supply pins
    - Shoot through current
    - Charging and discharging current
    - I/O switching
  - While the average supply current may be a few tens of milliamps, spikes associated with an 8 bit I/O switching can be hundreds of milliamps and a few nanoseconds wide
  - Power supplies and realistic circuit board traces cannot support these current spikes → noise on the supply voltage
  - Supply voltage noise can disrupt the normal operation of the processor or other circuits

- DC Power Supply Bypassing
  - Bypass capacitors are used to supply these spikes of current, preventing noise on the supply voltage pins



- DC Power Supply Bypassing
  - Realistic capacitor model

| ABBREVIATION | EXPLANATION        | SOURCE AND DETAILS          |
|--------------|--------------------|-----------------------------|
| ESR          | Equivalent Series  | Wire and connections to the |
|              | Resistance         | plate                       |
|              |                    | Produces heat               |
| ESL          | Equivalent Series  | Depends on package type     |
|              | Inductance         | Surface mount better        |
|              |                    | Smaller SMD better          |
| RLEAK        | Leakage Resistance | Type of dielectric          |



- DC Power Supply Bypassing
  - Realistic capacitor model

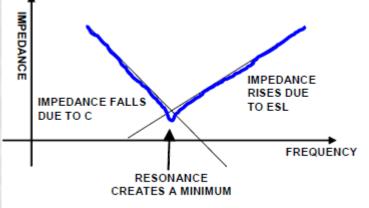
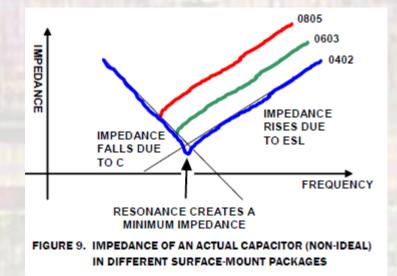
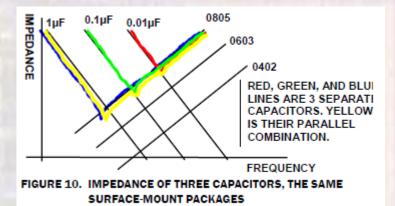





FIGURE 8. IMPEDANCE OF AN ACTUAL CAPACITOR (NON-IDEAL)



- DC Power Supply Bypassing
  - Realistic capacitor model



1µF

MPEDANCE

0.1µF

0.01uF

0805

FIGURE 11. IMPEDANCE OF THREE CAPACITORS, SCALED

SURFACE-MOUNT PACKAGES

0603

0402

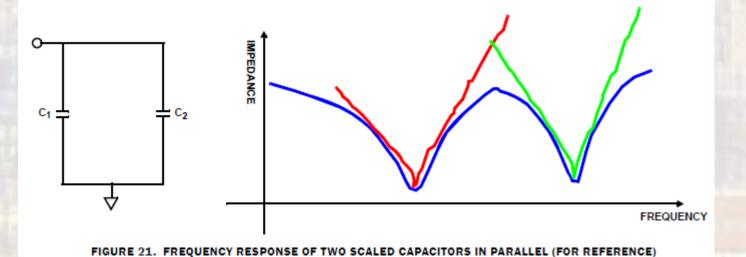
RED, GREEN, AND BLUE

LINES ARE 3 SEPARATE

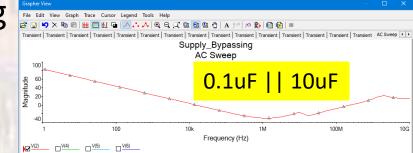
THEIR PARALLEL

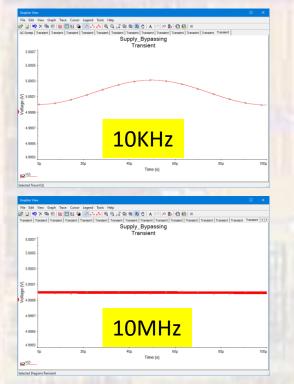
FREQUENCY

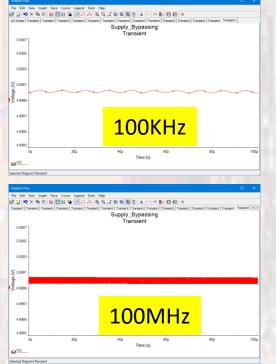
COMBINATION.

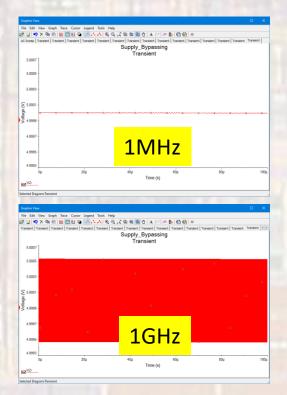

CAPACITORS, YELLOW IS

- DC Power Supply Bypassing
  - Most systems use 2 bypass capacitors
    - 1uF 10uF for low frequency high current spikes
    - .001uF .01uF for high frequency spikes


Values dependent on the system frequencies


© tj


Placed as close to the IC as possible to reduce inductance

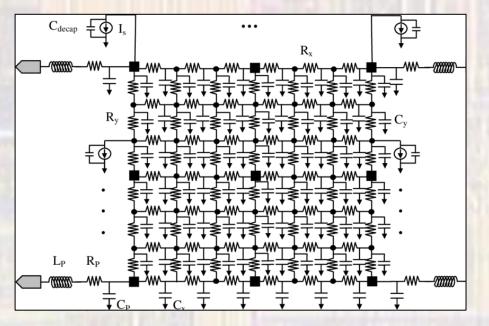



- DC Power Supply Bypassing
  - Attenuation of supply noise at different frequencies










## **Power Distribution**

- Board Level / System Level
  - Partition the design so that precise power (voltage) matching is not required between components or boards
    - I/Os with significant Noise Margin and PSRR
    - Can use 1 or more regulators
  - If voltage matching is required
    - Short, balanced traces may work but very tricky due to input impedances shifting over temp, components, ...
    - Trimmable regulators
  - In both cases multiple supply entry ports
    - Tied together on the board or in the system

## **Power Distribution**

- Chip Level
  - Grid structure for power
    - Multiple input locations (around the edges of the IC)
    - Internally tied together
    - Routed across many metal levels
    - Wide wires

