Last updated 8/23/24

e Register File
* A register file is a collection of registers treated as a single

entity
* reg_sel - chooses which register to pass to data_out
chooses which register to write
* w.enb- enables writing to a register when low, and clk
Reg O
Reg 1
reg_sel — Reg 2
: Reg 3
data_in data_out
w_en b — Reg 4
clil 434 Reg 5
Reg 6
Reg 7
ELE 3510 2

© tj

ELE 3510

°__Register File — 8, 16bit registers — 1 in/out

-- regfile_16x8x1
-- B8 - 16 bit registers
-- single input/output

-- created by johnsontimoj
5/7/18

- r~'

-- Inputs: clk, reg_sel, we_bar
-- outputs: data_out

11br§ry ieee;)
use 1eee.5td_19g1c_1164.a11;
use ieee.numeric_std.all;

entity regfile_16x8x1 is

port (

i_clk : in std_logic;
i_reg_sel : in std_logic_vector {2 downto 0);
i_data_in : in std_logic_vector (15 downto 0);
i_we_b: in std_logic;
o_data_out: out std_logic_vector(l5 downto 0)
H

end entity;

There are more efficient ways to
code this — using an array

architecture behavioral of regfile_16x8x1 is

-- register signals

signal reg_0: std_logic_vector(l5 downto 0);
signal reg_1l: std_logic_vector(l5 downto 0);
signal reg_2: std_logic_vector(l5 downto 0);
signal reg_3: std_logic_vector(l5 downto 0);
signal reg_4: std_logic_vector(l5 downto 0);
signal reg_5: std_logic_vector(l5 downto 0);
signal reg_6: std_logic_vector(l5 downto 0);
signal reg_7: std_logic_vector(1l5 downto 0);

-- register Tlogic
process(i_c1k)
begin
if(rising_edge(i_c1k)) then
if(i_we_b = '0') then
case(i_reg_sel) is
when "000" => reg_0 <= i_data_in;
when "001" => reg_l <= i_data_in;
when "010" => reg_2 <= i_data_in;
when "011" => reg_3 <= i_data_in;
when "100" => reg_4 <= i_data_in;
when "101" => reg_5 <= i_data_in;
when "110" => reg_6 <= i_data_in;
when "111" => reg_7 <= i_data_in;
when others => null;
end case;
end if;
end 1if;
end process;

-- output logic

rocess{all)

egin

case(i_reg_sel) is
when "000" => o_data_out <= reg_0;
when "001" =»> o_data_out <= reg_1;
when "010" =»> o_data_out <= reg_2;
when "011" =» o_data_out <= reg_3;
when "100" =» o_data_out == reg_4;
when "101" => o_data_out == reg_5;
when "110" =» o_data_out <= reg_6:
when "111" =» o_data_out <= reg_7:
when others => o_data_out <= reg_7; -- arbitrary

end case;

end process;

end behavioral;

3

© tj

ELE 3510

* Register File — multiple outputs

reg_selA

reg_selB

reg_selC

reg_selD

data_in

wr_sel
w_en b —

clk ——

Reg 0

Reg 1

Reg 2

Reg 3

Reg 4

Reg 5

Reg 6

Reg 7

data_outA
data_outB

data_outC
data_outD

© tj

* Register File — 8, 16bit registers — 4 outputs

. 1 y architecture behavioral of regfile_l6x8x4 1is -

- regfile_16x8x4 o g -- output Togic

—— 8 - 16 bit registers - register signals rocess(aﬂ)

- 4 outputs Signaq reg_0:] go'ﬁlntg .)g; Ee in (i 18

I = O signal reg_1: ownto 0); case(d reg se A) s

- gr eatgd by johnsontimoj signal reg_2: downto .)); when > o_data_outA <= reg_0;

- signal reg_3: downto 0); when "OOJ_" > o_data_outA <= reg_1l;

- signal reg_4: downto 0); when "010" => o_data_outA <= reg_2;

___ signal reg_5: downto 03: when "011" => o_data_outA <= reg_3;

- signal reg_6: g downto 0); when "100" => o_data_outA <= reg_4;
; 20 et = ! et - !

- :nputs:.clk, r‘eg_seLb'r.'r‘_seL we_bar signal reg7: std_logic_ downto 0); ::p:ﬂ t% _: g:g:%::gﬂ%: :; Fgg:g:

- Outputs: data_out a, b, c, begin when "111" => o_data_outA <= reg_7;

- when others => o_data_outaA <= reg_7;
end case;

library ieee; -- register Togic

use 'ieZe.std_1u3g'ic_1164.a'|'|; - CﬂSEﬁW Fegogﬁm) 15d o
use ieee.numeric_std.all; process(i_c1k) whnen => 0_data outB <= reg 0;
veain When oiataots < rea s
ent;‘é¥tr‘?gfﬂe_16x8x4 ” ‘lf(q;zjln%eeggzﬁ c;k%)eﬁhen when > o_data_outB <= reg_3;
i_clk : in std_logic; case(i_l reg se'l) is wpen > o,gatLoutB <f reg,x;:
i_reg_sela : in std_logi downto 0); when "000" reg_0 <= i_data_in; ""he” > o_data_outB <= '"99—6:
i_reg_selse : in std_logic downto 0); when reg_1 <= i_data_in; ""he” > O—d""%a«—ougg <: reg_g;
i_reg_selc : in std_logic downto 0); when reg_2 <= i_data_in; ""he” h > 0 3 ta_ou t5<7—reg_r3’-
i_reg_selD : in std_logic downto 0); when reg_3 <= i_data_in; d"‘ en others => 0_dala outt <= reg./;

i_wr_sel : in std_logic_ downto 0); when reg_4 <= i_data_in; end case, 1
i_data_in : in std_logic_v 5 downto 0); when reg_5 <= i_data_in; cﬁse(" '"99 se C)d"s _ i
i_we_b: in std_logic; when reg_6 <= i_data_in; \"’he” => 0 datt'LUUtC <= reg 0;
- when reg_7 <= i_data_in: when > o_data_outC <= reg_1;
o_data_outa: out std_logic_vector (15 downto 0); when others => null; WEEH > o_gata_outc = reg_%z
o_data_outB: out std_logic ctor (15 downto 0); end case; \'-’heﬂ > O_data_outc <= reg_4z
o_data_outcC: out std_logic_vector (15 downto 0); end if; when > U—dﬁ%ﬁ—ouig = FEG—S:
o_data_outD: out std_logic_vector (15 downto 0) end if; ""he” > O_da A_0UtC <= reg_>;
bE end process; when > o_data_outC <= reg_§;
and entity; when => o_data_outC <= reg_7;

when others =- o_data_outC <= reg_7;
end case;
case('l reg selD) is

when => o_data_outD <= reg_0;
when "001" > o_data_outD <= reg_1;
when "01 > o_data_outD <= reg_2;
when "011" => o_data_outD <= reg_3;
when "100" => o_data_outD <= reg_4;
when "101" => o_data outD <= reg_5;
when "110" => o_data_outD <= reg_ 6

There are more efficient ways to unen “Li2" 2 o data ouh < reg 7:

vhen others = o _data_outD <= reg_7;
end case;

code this — using an array end“procass]

end behavioral;

ELE 3510 5 © tj

» Register File — 8, 16bit registers — 4 outputs
* Array implementation

-- regfile_16x8x4
-- 8 - 16 bit registers
-- 4 outputs

-- created by johnsontimoj
5 ‘18

-- Inputs: clk, reg_sel, wr_sel, we_bar
-- Outputs: data_out a, b, c, d

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity regfile_16x8x4 is

port (
i_clk in _
i_reg_sela : in _ (2 downto 0);
i_reg_selB : in _ (2 downto 0);
i_reg_selc : in _ (2 downto 0);
i_reg_selD : in _ (2 downto 0);
i_wr_sel in std_ vector(2 downto 0);
i_data_in : in std_logic_vector (15 downto 0);
i_we_b in std_logic;
o_data_outA: out std_logic_vector (15 downto 0);
o_data_outB: out std_logic_vector(l5 downto 0);
o_data_outcC: out std_logic_vector (15 downto 0);
o_data_outD: out std_Tlogic_vector (15 downto 0)

J;
end entity;

ELE 3510

© tj

	Slide 1: Register Files
	Slide 2: Register Files
	Slide 3: Register Files
	Slide 4: Register Files
	Slide 5: Register Files
	Slide 6: Register Files

