Semiconductor Basics

Last updated 12/22/23

The Atom

Our understanding of atomic structure has changed over time

The Atom

Electron configurations

Discrete electron orbitals <-> Discrete energy levels to free/capture electrons

Higher electron configuration orbitals <-> Less energy to free the electron

Full electron configuration orbitals <-> More energy to free an electron

The Atom

A few atoms of interest

Silicon

Symbol: Si Atomic number: 14

Atomic mass: 28.0855 au

Electron Config: 1s²2s²2p⁶3s²3p² [Ne] 3s²3p²

Valance Electrons: 4, (4 empty spots)

8 possible states / atom

Boron

Symbol: B
Atomic number: 5

Atomic mass: 10.811 au

Electron Config: 1s²2s²2p¹ [He] 2s²2p¹

Valance Electrons: 3, (1 empty spot)

Phosphorus

Symbol: F

Atomic number: 15

Atomic mass: 30.974 au

Electron Config: $1s^22s^22p^63s^23p^3$ [Ne] $3s^23p^3$

Valance Electrons: 5, (3 empty spots)

Silicon Crystal Structure

- Silicon unit cell bonding model
 - Si has a half full outer electron shell (4 / 8)
 - Lowest energy state is the Diamond Lattice
 - 4 electrons are shared between 4 nearest neighbors

Atoms showing 4 nearest neighbor structure

Each atom appears to have a full valence band → very stable

Silicon Doping

 Replace some of the Si atoms in the crystal with another atom

Phosphorus
5 e- in its outer shell
Donor atom → N-type Si

Boron
3 e- in its outer shell
Acceptor atom → P-type Si

excess e- is easily freed

Acts like a conductor for Electrons

(negative charge carriers)

excess hole is easily freed
Acts like a conductor for Holes
(positive charge carriers)

- Mobility Electrons
 - Measure of how easy(hard) it is to move a charged particle through a solid
 - Lots of physics here but to simplify for Si
 - Conduction electrons represent an excess electron in the shared 3sp band from donor atoms
 - Free electron generation requires breaking a relatively weak bond
 - Movement is limited by collisions

SI atom

O Donor atom

Electron

→ Electron motion

— Shared electron

- Mobility Holes
 - Measure of how easy(hard) it is to move a charged particle through a solid
 - Lots of physics here but to simplify for Si
 - Valence holes represent a missing electron in the shared 3sp band from acceptor atoms
 - Hole generation requires breaking a relatively strong "normal" electron bond
 - Electrons must 'find' an open bond to move

) SI atom

Acceptor atom

Electron

Electron motion

Hole motion

Shared electron

- Mobility
 - Measure of how easy(hard) it is to move a charged particle through a solid
 - For moderately doped bulk Si:

Electron mobility:
$$\mu_n \approx 1500 \frac{cm^2}{Vs}$$

Hole mobility:
$$\mu_p \approx 500 \frac{cm^2}{Vs}$$

This 3:1 ratio is critical to understand for good electronic circuit design

- For advanced technologies Si:
 - Mobility typically ranges from 2:1 to 1:1

- Drift
 - Motion of a charged particle due to an electric field
 - Subject to collisions and random thermal motion

current density: current per cross sectional area

Hole current density: $J_{p-drift} = qp\mu_p E$

$$p$$
 – hole density μ_n – hole mobility

Electron current density: $J_{n-drift} = qn\mu_n E$

$$n$$
 – electron density μ_n – electron mobility

Drift Current

- For 2 equal cross-sectional areas (A) of silicon (one n, one p)
- With the same doping density (n = p)
- In the same Electric field (E)

$$I_p = qp\mu_p \mathsf{EA} \qquad I_n = qn\mu_n \mathsf{EA}$$

• But remember, $\mu_n \sim 3 \times \mu_p$

Under equal circumstances:

N-type silicon conducts 3 times as much current as P-type silicon