Semiconductor Basics

Last updated 12/27/24

These concepts have been greatly simplified

The Atom

 Our understanding of atomic structure has changed over time

Bohr (1913) – Electron Orbitals Nucleus - Protons and Neutrons Electron Orbital - Period 1 Elements 2 electrons Electron Orbital - Period 2 Elements 8 electrons Electron Orbital - Period 3 Elements 8 electrons

Schrödinger (1926) – Electron Clouds

2

The Atom

Electron configurations

Discrete electron orbitals <-> Discrete energy levels to free/capture electrons

Higher electron configuration orbitals <-> Less energy to free the electron

Full electron configuration orbitals <-> More energy to free an electron

The Atom

• A few atoms of interest

Silicon			T BERRY FROM TOTAL
Symbol:	Si		a second and a second second
Atomic number:	14	7. 1. 1. 1. 1. 1.	
Atomic mass:	28.0855 au	S (20) 22	8 possible
Electron Config:	1s ² 2s ² 2p ⁶ 3s ² 3p ²	[Ne] $3s^23p^2$	states / atom
Valance Electrons	4, (4 empty spots)	+	

Boron	Distant and the second	
Symbol:	В	
Atomic number:	5	
Atomic mass:	10.811 au	
Electron Config:	1s ² 2s ² 2p ¹ [He] 2s ² 2p ¹	
Valance Electrons:	3, (1 empty spot)	

Phosphorus		10
Symbol:	Р	44
Atomic number:	15	
Atomic mass:	30.974 au	2 BB
Electron Config:	1s ² 2s ² 2p ⁶ 3s ² 3p ³	[Ne] 3s ² 3p ³
Valance Electrons:	5, (3 empty spots)	

Silicon Crystal Structure

- Silicon unit cell bonding model
 - Si has a half full outer electron shell (4 / 8)
 - Lowest energy state is the Diamond Lattice
 - 4 electrons are shared between 4 nearest neighbors

Atoms showing 4 nearest neighbor structure

Each atom appears to have a full valence band \rightarrow very stable

Silicon Doping

 Replace some of the Si atoms in the crystal with another atom

excess e- is easily freed Acts like a conductor for Electrons (negative charge carriers) excess hole is easily freed Acts like a conductor for Holes (positive charge carriers)

- Mobility Electrons
 - Measure of how easy(hard) it is to move a charged particle through a solid
 - Lots of physics here but to simplify for Si
 - Conduction electrons represent an excess electron in the shared 3sp band from donor atoms
 - Free electron generation requires breaking a relatively weak bond
 - Movement is limited by collisions

- SI atom
 Donor atom
 Electron
 Electron motion
 - Shared electron

- Mobility Holes
 - Measure of how easy(hard) it is to move a charged particle through a solid
 - Lots of physics here but to simplify for Si
 - Valence holes represent a missing electron in the shared 3sp band from acceptor atoms
 - Hole generation requires breaking a relatively strong "normal" electron bond
 - Electrons must 'find' an open bond to move

- SI atom
- O Acceptor atom
- Electron
- Electron motion
- Hole motion
- Shared electron

- Mobility
 - Measure of how easy(hard) it is to move a charged particle through a solid
 - Historical bulk Si: Electron mobility: $\mu_n \approx 1500 \frac{cm^2}{Vs}$

Hole mobility:

$$\mu_p \approx 500 \frac{cm^2}{Vs}$$

For modern FinFETs:

Electron mobility: $\mu_n \approx 240 \frac{cm^2}{Vs}$ Hole mobility: $\mu_p \approx 80 \frac{cm^2}{Vs}$

This 3:1 ratio is critical to understand for good electronic circuit design

- Drift
 - Motion of a charged particle due to an electric field
 - Subject to collisions and random thermal motion

current density: current per cross sectional area

Hole current density: $J_{p-drift} = qp\mu_p E$

p - hole density $\mu_p - hole mobility$ Electron current density: $J_{n-drift} = qn\mu_n E$

n - electron density $\mu_n - electron mobility$

- Drift Current
 - For equal cross-sectional areas (A) of silicon (one n, one p)
 - With the same doping density (n = p)
 - In the same Electric field (E)

$$I_p = qp\mu_p \mathsf{EA}$$
 $I_n = qn\mu_n \mathsf{EA}$

• But remember, $\mu_n \simeq 3 \times \mu_p$

Under equal circumstances: N-type silicon conducts 3 times as much current as P-type silicon

© ti