Last updated 7/18/23

- Processor Architecture
 - Harvard separate Instruction and Data memory paths

- RISC Instruction set
 - 2 basic types of instructions
 - Register based instructions
 - Memory instructions
 - Register Instructions
 - Only require access to the internal registers
 - Arithmetic
 - Logical
 - Control
 - Memory Operations
 - Read or write to memory/registers

Instruction Execution

get next instruction from instruction memory determine what the instruction is if necessary – do what the instruction requires if necessary – get value from data memory if necessary – place value in data memory if necessary – store result in register

- Instruction Sequencing
 - Program Counter (PC)
 - Register that holds the NEXT instruction memory location to be fetched
 - Provides the address for the instruction memory read
 - Typically the register is incremented each clock cycle
 - Incremented by the size of an instruction
 - e.g. for a 16 bit instruction word the PC would be incremented by 2

- Instruction Sequencing
 - Program control
 - Linear flow increment PC normally
 - Function call
 - Store the "planned" next instruction address somewhere
 - Place the first instruction address for the function in the PC
 - Execute linearly in the function until done
 - Restore the "planned" next instruction address

Single Cycle Processor

• 1 line of code

Intro

The compiler has assigned

- b to memory location 4000
- c to memory location 4004
- a to memory location 4008

$$a = b + c;$$

The compiler turned the single line into 7 instructions

Mem loc	Instruction	Encoding	action
1000	ldi R1, 4000	90	Load loc for B into R1
1002	ld R2, mem(R1)	11	Put value at loc for B in R2
1004	ldi R1, 4004	92	Load loc for C into R1
1006	ld R3, mem(R1)	12	Put value at loc for C in R3
1008	add R2, R3, R4	27	R4 <- R2 + R3
100A	ldi R1, 4008	84	Load loc for A into R1
100C	st mem(R1), R4	21	Put value of R4 into loc for A

Simplified Block Diagram

• First Instruction (fetch)

Control puts a memory location (1000) on the address bus along with a read signal Instruction memory returns the value at that location (90)

© ti

First Instruction (decode)

© ti

First Instruction (execute)

© tj

First Instruction (mem)

© ti

First Instruction (write back)

© ti

© tj

- Our Processor: Functionality
 - Harvard Architecture
 - RISC Load/Store Instruction Set
 - 16 bit instruction words
 - 4 8 bit data registers available for executing instructions (A-B-C-D)
 - Support for 16 instructions (11 used)
 - 3 memory based instructions

Our Processor

