Last updated 7/14/23

* Testbenches are used to simulate designs

e RTL level
e Gate level

e General Testbench Structure

Device Under

> Outputs
s Test (DUT) N
Graphical RTL Graphical
HDL Gate Level
Text File Post Fit Text File

ELE 3510 2 © tj

ELE 3510

e Manual Testbench

* Inputs
* Hand coded
 HDL generated

* Expected Outputs
e User generated

* Results
* Compare waveforms to expectations

e Limited to

* Very small systems
e Systems with very few inputs and outputs

3

Ot

e Automated Testbench

* Inputs
 HDL generated
 Read from a file

e Expected Outputs

 HDL generated
e Be careful not to use the same code

 Read from a file
* Be careful not to use the same code

e Results
 |dentify errors and document

* Test #, Time, Expected Value, Actual Value, ...

ELE 3510 4

Ot

e VHDL Testbench Code

e General structure
* Define input and output signals
e Connect inputs and outputs to the DUT (device under test)
e Generate input waveforms
e Simulate and verify outputs

* Test benches can contain un-synthesizable code
e Variables
* Time
» After
* Wait for
* Loops
* For
e While-loop

ELE 3510 5 © tj

e Quartus Interaction and ModelSim

e To use Quartus to start/run your ModelSim simulation you
must setup the simulation in Quartus

* Assignments - Settings - EDA Tool Settings - Simulation - Test
Benches :

* Quartus will generate errors on compilation if you set the
testbench to the top-level entity

* Use the device under test as the top-level entity

ELE 3510 6 © tj

ELE 3510

* Documentation, includes and entity
* No ports — testbench is self-contained
* Generics are allowed

-- testhench_stim_th. vhdl
-— by: johnsontimoj

-- created: 7/20/18

-- wersion: 0.0

-- Testhench stimulus generation example
-- inputs: None

-- outputs: stimulus signals, counter output

Tibrary ieee;
use ieee.std_logic_1164.al11;
use iese.numeric_std.all;

entity testbench_stim_th is
generic(

; CHUM_BITS: natural := 4 >
1

-- No I/0 (ports)
end entity;

Ot

* Signal Definitions
* Use all caps

e Setup a constant for the clk (PER)
* Only need to change this 1 place when changing the clk frequency

= :ﬂqut
signa
signal
signal
signal
signal
signal

signal

constant PER:

signals
CLE:
R5TE:
X_IN:
Y_IM:
£Z_TIMN:
CNT_IN:

—-— Qutput signals

—— clock constant

architectur€ testbench)f testbench_stim_tbh 1is

std_logic,
std_logic;
std_logic;
std_logic_vector (7 downto 0);
std_logic;
std_logic_vector (6 downto 0);

CNT_OUT : std_logic_vector ((NUM_BITS - 1)
- 50MHZ
time := 20 ns;

downto 0);

ELE 3510

Ot

e Device under test
* Component + instantiation

component counter_unsigned_n_bit]

generic(
N: natural := 8
port (
i_clk : in std_logic;
i_rsth : in std_logic;
o_cnt out std_logic_vector{(N - 1) downto 0)
) H

end component;

-- Device under test (DUT)

____________________________________ Overwriting the generic
DUT: counter_unsigned_n_bit
generic map(

N == NUM_BITS

)
port map(
i_rsth => RSTB,
i_clk => CLK,
y 0_Cnt => CNT_OUT
L]

ELE 3510 9 © tj

 Signal generation
* Clk and ResetB

-- Clock process

clock: process -- no sensitivity list allowed
begin
CLE == "07;

wait for PER/2;
infinite: Tloop
CLK <= not CLK;
wait for PER/Z;
end loop;
end process;

-- Resel process
-- active low, changes on falling edge

resetB: process -- no sensitivity 1ist allowed
begin
RSTE == "0°7;
wait for Z®PER;
RSTE <= "1°;
wait; -— waits forever

end process;

ELE 3510

Ot

ELE 3510

* Signal generation
* std_logic

-- Concurrent signal assignment
-- note "after” uses absolute timing within a single statement

Z_IN == '1°7,
0" after 20 ns,
1" after 25 ns,
0" after 25 ns;

-- fixed pattern process

for i in x_values'range loop
¥_IN == x_va1ue5(1g
wait for 10 ns;
end loop;
wait for 20 ns; -- executes repeatedly

end process;

fixed: process -- no sensitivity 1list allowed
constant x_values: std_logic_vector (1l downto 0) := "110101100101";
begin

enc] 1 1K 1] N 0
11

Ot

ftestbench_stim_tb/¥_IN 10100101

* Signal generation
» std_logic_vector

-- vector non-periodic process

VNp: process -- no sensitivity 1ist allowed
begin
wait for 30 ns;
Y_IN <= std_logic_vector(to_unsigned(22, Y_IN'length));

wait for 20 ns;
Y_IN <= std_logic_vector(to_unsigned(l5, Y_IN'length));
wait for 10 ns;
Y_IN == "10100101";
wait; -- executes only once
end process;

-- Counting process
Count: process -- no sensitivity 1ist allowed
begin
for i in 0 to 9 Tloop
wait for 2*PER;
CNT_IN <= std_logic_vector(to_unsigned({i * 10), 7));
end loop;
end process;

| 00010110 :l 00001111 :|

10100101

ELE 3510

 Additional Information

e Simulation Setup
e Class Website/Labs : Modelsim Testbench Setup

e Simulation Tips

* Restart, Add signals, ...
e Class Website/Labs : Modelsim Simulation Tips

ELE 3510 13 © tj

	Slide 1: Testbench Basics
	Slide 2: Testbench Basics
	Slide 3: Testbench Basics
	Slide 4: Testbench Basics
	Slide 5: Testbench Basics
	Slide 6: Testbench Basics
	Slide 7: Testbench Basics
	Slide 8: Testbench Basics
	Slide 9: Testbench Basics
	Slide 10: Testbench Basics
	Slide 11: Testbench Basics
	Slide 12: Testbench Basics
	Slide 13: Testbench Basics

