Last updated 2/2/24

ELE 3510

e Best Practices ???

* Best practices are often defined by company, toolset or
device

* In our case — Dr. Johnson is setting the “best practices”

* These rules are for Class/Lab purposes. Industry best
practices would include a much more extensive list
* |/O synchronization
* Clock domains
e Revision control
* Test coverage

© tj

e Use meaningful names for blocks, signals and programs

* Use i xyz for block input signal names and o xyz for
block output signal names

* Use _tb and _del0 name extensions for testbenches
and hardware implementations

e 1 design file, instantiate it in the testbench and
hardware implementation files

* No latches

* No Clock Gating — Use Enable if Necessary

 Make blocks generic where appropriate

* Use instantiation instead of schematics for hierarchy

e Use explicit port mapping when instantiating
components

 No signal initialization in declarations

ELE 3510 3 © tj

e No variables as signals

* 1/O signals are SLV, internal signals are signed/unsigned
as appropriate

* Embed conditional signal assignments in processes
e Use rising edge()

e Reset bar for general (control) synchronous logic

* No reset for Data Path FFs and Registers

e Compare to (<0)or(>=0)

* Clock divider OK for slowing to human speeds

* |f your FSM has more than 10 states — rethink the
problem/solution

* Break FSM designs into separate Next State, Register,
and Output Logic(Mealy) sections

e Create a “heartbeat” on your DE10 implementations

ELE 3510 4 © tj

e Use meaningful names for blocks, signals and
programs

Stoplight with emergency detection for lab 22

ﬂ vhd\\
« NEQE?/M.

stoplight w_emergency.vhdl
stoplight w_emergency_tb.vhdl
stoplight w_emergency _del0.vhdl

Note: primary function followed by
secondary functions

ELE 3510 5 © tj

ELE 3510

e Use i_xyz for block input names and o_xyz for block
output names

port(i_A: in std_logic_vector(3 downto 0);
i B: in std_logic_vector(3 downto 0);
i_CIN: in std_logic;

o SUM: out std_logic_vector(3 downto 0);
o COUT: out std_logic

);

Exception: When using the pin-names from the QSF
file for DE10 implementations, the names must

match exactly [eniyio 4 ceiois

port(
CLOCK 50: in std_logic;
SW: in std_logic_vector(9 downto 0);
HEXO: out std_logic_vector(7 downto 0);
HEX1: out std_logic_vector(7 downto 0);
HEX2: out std_logic_vector(7 downto 0);
HEX3: out std_logic_vector(7 downto 0)

15

end entity;

* 1 design file, instantiate it in the testbench and HW

implementation files

My_Block_tb.vhdl
Test
Inputs
My_Block.vhdl
instantiation
Output
Checks
My_Block.vhdl
My_Block del0.vhdl
NO Changes to the deSign switches
My_Block.vhdl LEDs
instantiation
SSEG

ELE 3510 7 © tj

ELE 3510

Type

-

* No Latches

library ieee;
use ieee.std_logic_1164.all;

entity latches is
port(

i_clk: instd_logic;

i_d: instd_logic;

0_Qq: out st/i_logic/
); ‘/ ‘/’s
end entity Iatchesj
|
\
|
architecture behaLioraI of latches is
\

begin \ \
process(i_clk, i_d{ \\

begin \
if(i_clk="1") ther\
o q<=i_d;
end if;

end process;
end architecture;

ID Message

10631 VHDL Process Statement warning at

i_clk

2 |

10041 Inferred Tatch for "q" at 'Iatches.x-h&‘ff{@

o_g$latc

DATAIN
LATCH_ENABLE
ACLR

ouToL

_— -

~
-

— -
tches. vhdl (26}‘:"\"rﬂf££,rj,jiirlgi:la.tchf(gg)/fnp—xsi'ijna.'l or var‘iab'l)\/”q", which holds its previous value in one or

~

W

~

© tj

e Our concept of sequential logic requires that all
registers are updated at the same time

* Clock gating introduces delays in some paths and

not in others = possibility of clocks not occurring

at the same time

Combinational

Combinational

— Register : Register . Register
i Logic ¢ Logic 5
> > >
clk
) 8
@\Sc)e_‘-’\o(\
3 . . s \)
_ Combinational : Combinational «%“6)
—1 Register . Register) —1 Register
Logic Logic
> > >
clk Gating
Logic

ELE 3510

© tj

* No Clock Gating — Use Enable if Necessary

* We can “stop” the clock to some registers by using
an enable signal

e Does not provide full power savings

EN

Register
b >
clk

ELE 3510 10 © tj

ELE 3510

* Make blocks generic whenever possible

generic section added
- defines N

- defaults N to 8
- can be overwritten when instantiated

Vector sizes now defined with N

library ieee;
use ieee.std_logic_1164.all;

entity registers is

generic(
N: integer :=8
it
port (
i_clk: In std_logic;
i_rstb: in std_logic;
i D: in std_logic_vector((N - 1) downto 0);
o_Q: out std_logic_vector((N - 1) downto 0)
);
end entity;

architecture behavioral of registers is
begin
process(i_clk, i_rstb)
begin
if (|_0rs'élb<—= ?;Jg:?n 0); — (others => ‘0’) used since N can change
elsif (rising_edge(i_clk)) then
o_Q<=i_D;
end if;
end process;
end behavioral;

11 © tj

e Always use explicit port mapping on component

Instantiation

library ieee;
use ieee.std_logic_1164.all;

entity dff_instantiation is

port (
CLOCK_50: in std_logic;
SW in std_logic_vector(1 downto 0);
LEDR : out std_logic_vector(0 downto 0)
);
end entity;
d ffreg O
1 i D
SWI[1..0] | > r =
CLOCK_50[> _clk
I 0 i_rstbf
ELE 3510

—+°92 ™ [EDR[0.0]

port map ~_

component d_ff

end component;

begin
reg_0:d_ff

i_clk
o_Q
0

end architecture;

port(
i D: instd_logic;
i_clk: instd_logic;
i_rstb: instd_logic;
o_Q: outstd logic
);

\Aport map(i_ D =>SW(1),

i_rstb =>SW(0),

architecture structural of dff_instantiation is ‘

component prototype

explicit port mapping

component pin => my signal

/
=> CLOCK_50,

=> LEDR(0)

12

© tj

* No signal initialization in declarations
* It is not possible to implement signal initialization in

hardware

* Rely on reset for any required initialization in hardware

signal foo: std_logic :£41

signal foo: std_Togic := "17;
begin

EPG;ESS(i_c1k}
egin
if(rising_edge(i_clk)) then
foo <= '0";
y = "1%;
end 1f;
end process;

X = foo

x == Too;

-- sections to show initialization fails

g

Sim says it works
HW fails !!!

ELE 3510

13

’.

/

[
1 th
i_clk[> —CK0— > x
TM0lscir
y~reg0
1 h‘l_D
K o— >y
1'h0
~|SCLR

Sim shows x (foo) starts at ‘1’

Hardware has nothing to make x (foo)
startat 1

© tj

* No variables as signals
* We are using HDL code to represent HARDWARE
e Variables do not have a HARDWARE analog

e Variables are treated differently than signals
e Variables are updated immediately in a process
» Signals are only updated at the end of a process

* Variable are appropriate for compile time calculations
* Generate
* Test Benches

ELE 3510 14 © tj

ELE 3510

* |/O signals are SLV, internal signals are
signed/unsigned as appropriate
* We are using HDL code to represent HARDWARE

* |/O ports are represented by std logic or std logic_vectors
* They are interpreted as connections

* Internal signals
* Use std logic to represent single wires

* Use unsigned to represent unsigned bus signals and structural
buses (memory addresses, ...)

* Use signed to represent signed bus signals

15

© tj

ELE 3510

* Embed conditional signal assignments in processes

* Processes allow for a more structured design

* Processes allow the use of more flexible constructs
e jf-else

* (Case

e Basic forms of If-else and Case statements create the
same RTL as When-else and With-select

e Simple signal assignments do not need to be placed in a
process
e A<=(Bor(C);

16

© tj

e Use Rising_Edge()
e (rising_edge(clk)) instead of (clk’'event and clk = “1’) in
register (FF designs)
 Also use (falling_edge(clk))

* These do better multi-state checking in simulation

_ . . process(i_clk, i_rstb)
clk’event includes things like begin
751 if (i_rstb ='0') then
o Q<="0%
U->1 elsif (rising_edge(i_clk)) then
o Q<=i_D;
rising_edge only includes 0 = 1 end if;
end process;

ELE 3510 17

© tj

e Reset_bar for general (control) synchronous logic
* All non-data path registers will have a rstb signal

library ieee;
use ieee.std_logic_1164.all;

entity d_ffis
port (
i_clk:instd_logic;
i_rstb:in std_logic;
i D: in std_logic;

o Q: out std_logic
)7
end entity;

architecture behavioral of d_ff is
begin
process(i_clk, i_rstb)
begin
if (i_rstb ='0') then
o Q<="0
elsif (rising_edge(i_clk)) then
o Q<=i D;
end if;
end process;
end behavioral;

ELE 3510

18

library ieee;
use ieee.std_logic_1164.all;

entity registers is
generic(
N: integer :=8
);
port (
i_clk: instd_logic;
i_rstb: in std_logic;
i D: in std_logic_vector((N - 1) downto 0);

o Q: out std_logic_vector((N - 1) downto 0)
);
end entity;

architecture behavioral of registers is
begin
process(i_clk, i_rstb)
begin
if (i_rstb ='0') then
o_Q <= (others =>'0");
elsif (rising_edge(i_clk)) then
o Q<=i_D;
end if;
end process;
end behavioral;

© tj

e Compare to (< 0) or (>=0)
* These comparisons only require checking the MSB

ELE 3510 19 © tj

* Lots of things can go wrong on the way to getting
to a DE10 implementation

* An easy check that you have programmed the DE10
implementation properly is to bring out your DE10 clock
signal to an LED

* Assuming you have created a clock divider and the divided
signal is called something like clk_sig
* Add something like
LEDR(9) <= clk_sig;
in the output section of your DE10 implementation

* Then you can be sure your programming succeeded based on the
“heartbeat”

ELE 3510 20 © tj

	Slide 1: VHDL Best Practices
	Slide 2: VHDL Best Practices
	Slide 3: VHDL Best Practices – page 1/2
	Slide 4: VHDL Best Practices – page 2/2
	Slide 5: Use meaningful names …
	Slide 6: Use i_xyz …
	Slide 7: 1 design file, instantiate …
	Slide 8: No Latches
	Slide 9: No Clock Gating
	Slide 10: No Clock Gating – Use Enable
	Slide 11: Make Blocks Generic
	Slide 12: Use Explicit Port Mapping
	Slide 13: No Signal Initialization
	Slide 14: No Variables as Signals
	Slide 15: I/O signals are …
	Slide 16: Embed conditional signal …
	Slide 17: Use Rising_Edge()
	Slide 18: Reset_bar for general …
	Slide 19: Compare to (< 0) or (>= 0)
	Slide 20: Create a DE10 heartbeat output

