
VHDL 
Best Practices

Last updated 2/2/24



2 © tjELE 3510

VHDL Best Practices

• Best Practices ???

• Best practices are often defined by company, toolset or 
device

• In our case – Dr. Johnson is setting the “best practices”

• These rules are for Class/Lab purposes. Industry best 
practices would include a much more extensive list
• I/O synchronization

• Clock domains

• Revision control

• Test coverage

• …



3 © tjELE 3510

VHDL Best Practices – page 1/2

• Use meaningful names for blocks, signals and programs 
• Use i_xyz for block input signal names and o_xyz for 

block output signal names
• Use _tb and _de10 name extensions for testbenches 

and hardware implementations
• 1 design file, instantiate it in the testbench and 

hardware implementation files
• No latches
• No Clock Gating – Use Enable if Necessary
• Make blocks generic where appropriate
• Use instantiation instead of schematics for hierarchy
• Use explicit port mapping when instantiating 

components
• No signal initialization in declarations



4 © tjELE 3510

VHDL Best Practices – page 2/2

• No variables as signals
• I/O signals are SLV, internal signals are signed/unsigned 

as appropriate
• Embed conditional signal assignments in processes
• Use rising_edge()
• Reset_bar for general (control) synchronous logic
• No reset for Data Path FFs and Registers
• Compare to ( < 0) or ( >= 0)
• Clock divider OK for slowing to human speeds
• If your FSM has more than 10 states – rethink the 

problem/solution
• Break FSM designs into separate Next State, Register, 

and Output Logic(Mealy) sections
• Create a “heartbeat” on your DE10 implementations



5 © tjELE 3510

Use meaningful names …

• Use meaningful names for blocks, signals and 
programs 

Stoplight with emergency detection for lab 22

lab22.vhdl  

testbench.vhdl 

board.vhdl

stoplight_w_emergency.vhdl

stoplight_w_emergency_tb.vhdl

stoplight_w_emergency_de10.vhdl

Note: primary function followed by   
           secondary functions



6 © tjELE 3510

Use i_xyz …

• Use i_xyz for block input names and o_xyz for block 
output names

Exception: When using the pin-names from the QSF 
file for DE10 implementations, the names must 
match exactly

port( i_A:    in   std_logic_vector(3 downto 0);
  i_B:    in   std_logic_vector(3 downto 0);
  i_CIN:   in   std_logic;
  o_SUM:  out  std_logic_vector(3 downto 0);
  o_COUT:  out  std_logic
  );

entity lab_4_de10 is
   port(
      CLOCK_50 :     in  std_logic;
      SW:             in  std_logic_vector(9 downto 0);
      HEX0:          out std_logic_vector(7 downto 0);
      HEX1:          out std_logic_vector(7 downto 0);
      HEX2:          out std_logic_vector(7 downto 0);
      HEX3:          out std_logic_vector(7 downto 0)
   );
end entity;



7 © tjELE 3510

1 design file, instantiate …

• 1 design file, instantiate it in the testbench and HW 
implementation files

My_Block.vhdl

My_Block.vhdl
instantiation

My_Block_tb.vhdl

My_Block.vhdl
instantiation

My_Block_de10.vhdl

switches

LEDs

SSEG

Test
Inputs

Output
Checks

No Changes to the design



8 © tjELE 3510

No Latches

• No Latches

library ieee;
use ieee.std_logic_1164.all;

entity latches is
   port(
           i_clk:     in std_logic;
           i_d :       in std_logic;

           o_q :    out std_logic
   );
end entity latches;

architecture behavioral of latches is
begin
   process(i_clk, i_d)
   begin
      if(i_clk = '1') then  
         o_q <= i_d;
      end if;
   end process;
end architecture;



9 © tjELE 3510

No Clock Gating

• Our concept of sequential logic requires that all 
registers are updated at the same time

• Clock gating introduces delays in some paths and 
not in others → possibility of clocks not occurring 
at the same time

Register Register Register
Combinational 

Logic
Combinational 

Logic

clk

Register Register Register
Combinational 

Logic
Combinational 

Logic

clk Gating
Logic



10 © tjELE 3510

No Clock Gating – Use Enable

• No Clock Gating – Use Enable if Necessary

• We can “stop” the clock to some registers by using 
an enable signal
• Does not provide full power savings

Register

clk

D

EN



11 © tjELE 3510

Make Blocks Generic

• Make blocks generic whenever possible

library ieee;
use ieee.std_logic_1164.all;

entity registers is
 generic(
  N: integer := 8
 );
 port (
         i_clk :  In std_logic; 
          i_rstb:  in std_logic; 
     i_D :   in std_logic_vector((N - 1) downto 0); 

          o_Q:   out std_logic_vector((N - 1) downto 0)
    );
end entity;

architecture behavioral of registers is
begin
 process(i_clk, i_rstb)
      begin
  if (i_rstb = '0') then   
   o_Q <= (others => '0');
       elsif (rising_edge(i_clk)) then
   o_Q <= i_D;
  end if;
 end process;
end behavioral;

generic section added
- defines N
- defaults N to 8
- can be overwritten when instantiated

Vector sizes now defined with N

(others => ‘0’) used since N can change



12 © tjELE 3510

Use Explicit Port Mapping

• Always use explicit port mapping on component 
instantiation architecture structural of dff_instantiation is

 component d_ff
  port(
    i_D : in std_logic; 
    i_clk : in std_logic; 
    i_rstb: in std_logic; 

    o_Q: out std_logic
  );
 end component;
 
begin
 reg_0: d_ff 
  port map(i_D => SW(1),
      i_clk => CLOCK_50,
      i_rstb => SW(0),
      o_Q  => LEDR(0)
  );
end architecture;

component prototype

explicit port mapping
component pin => my signal

port map

library ieee;
use ieee.std_logic_1164.all;

entity dff_instantiation is
 port (
       CLOCK_50 : in std_logic; 
       SW :  in std_logic_vector(1 downto 0); 
   LEDR :   out std_logic_vector(0 downto 0) 
    );
end entity;



13 © tjELE 3510

• No signal initialization in declarations
• It is not possible to implement signal initialization in 

hardware 

• Rely on reset for any required initialization in hardware

No Signal Initialization

signal foo: std_logic := ‘1’;

x = foo Sim shows x (foo) starts at ‘1’

Hardware has nothing to make x (foo)
start at 1Sim says it works

HW fails !!!



14 © tjELE 3510

• No variables as signals
• We are using HDL code to represent HARDWARE

• Variables do not have a HARDWARE analog

• Variables are treated differently than signals
• Variables are updated immediately in a process

• Signals are only updated at the end of a process

• Variable are appropriate for compile time calculations
• Generate

• Test Benches

No Variables as Signals



15 © tjELE 3510

• I/O signals are SLV, internal signals are 
signed/unsigned as appropriate
• We are using HDL code to represent HARDWARE

• I/O ports are represented by std_logic or std_logic_vectors
• They are interpreted as connections

• Internal signals
• Use std_logic to represent single wires

• Use unsigned to represent unsigned bus signals and structural 
buses (memory addresses, …)

• Use signed to represent signed bus signals

I/O signals are …



16 © tjELE 3510

• Embed conditional signal assignments in processes
• Processes allow for a more structured design

• Processes allow the use of more flexible constructs
•  if-else

•  case

• Basic forms of If-else and Case statements create the 
same RTL as When-else and With-select 

• Simple signal assignments do not need to be placed in a 
process
•  A <= (B or C);

Embed conditional signal …



17 © tjELE 3510

• Use Rising_Edge()
• (rising_edge(clk)) instead of (clk’event and clk = ‘1’) in 

register (FF designs)

• Also use (falling_edge(clk))

• These do better multi-state checking in simulation

clk’event includes things like 

 Z → 1

 U → 1

rising_edge only includes 0 → 1

Use Rising_Edge()

process(i_clk, i_rstb)
   begin
      if (i_rstb = '0') then
         o_Q <= '0';
      elsif (rising_edge(i_clk)) then
         o_Q <= i_D;
      end if;
end process;



18 © tjELE 3510

Reset_bar for general …

• Reset_bar for general (control) synchronous logic
• All non-data path registers will have a rstb signal

library ieee;
use ieee.std_logic_1164.all;

entity registers is
 generic(
  N: integer := 8
 );
 port (
       i_clk : in std_logic; 
        i_rstb: in std_logic; 
   i_D :  in std_logic_vector((N - 1) downto 0); 

        o_Q:  out std_logic_vector((N - 1) downto 0)
    );
end entity;

architecture behavioral of registers is
begin
 process(i_clk, i_rstb)
      begin
  if (i_rstb = '0') then   
   o_Q <= (others => '0');
       elsif (rising_edge(i_clk)) then
   o_Q <= i_D;
  end if;
 end process;
end behavioral;

library ieee;
use ieee.std_logic_1164.all;

entity d_ff is
 port (
       i_clk : in std_logic; 
       i_rstb: in std_logic; 
   i_D :  in std_logic; 

       o_Q:  out std_logic
    );
end entity;

architecture behavioral of d_ff is
begin
 process(i_clk, i_rstb)
      begin
  if (i_rstb = '0') then   
   o_Q <= '0';
       elsif (rising_edge(i_clk)) then
   o_Q <= i_D;
  end if;
 end process;
end behavioral;



19 © tjELE 3510

Compare to ( < 0) or ( >= 0)

• Compare to ( < 0) or ( >= 0)
• These comparisons only require checking the MSB



20 © tjELE 3510

Create a DE10 heartbeat output

• Lots of things can go wrong on the way to getting 
to a DE10 implementation
• An easy check that you have programmed the DE10 

implementation properly is to bring out your DE10 clock 
signal to an LED

• Assuming you have created a clock divider and the divided 
signal is called something like clk_sig
• Add something like 

 LEDR(9) <= clk_sig;

    in the output section of your DE10 implementation

• Then you can be sure your programming succeeded based on the 
“heartbeat”


	Slide 1: VHDL  Best Practices
	Slide 2: VHDL Best Practices
	Slide 3: VHDL Best Practices – page 1/2
	Slide 4: VHDL Best Practices – page 2/2
	Slide 5: Use meaningful names …
	Slide 6: Use i_xyz …
	Slide 7: 1 design file, instantiate …
	Slide 8: No Latches
	Slide 9: No Clock Gating
	Slide 10: No Clock Gating – Use Enable
	Slide 11: Make Blocks Generic
	Slide 12: Use Explicit Port Mapping
	Slide 13: No Signal Initialization
	Slide 14: No Variables as Signals
	Slide 15: I/O signals are …
	Slide 16: Embed conditional signal …
	Slide 17: Use Rising_Edge()
	Slide 18: Reset_bar for general …
	Slide 19: Compare to ( < 0) or ( >= 0)
	Slide 20: Create a DE10 heartbeat output

