Last updated 2/19/25

ELE 3510

* Four major VHDL memory solutions

Mux based
* Only applicable for ROMs

FlipFlop based

* Very large — only acceptable for very small memories

Inferred

« Memory is implemented in a pre-built memory block
* Memory block must exist in the platform
e Tightly coupled memory — small but very fast
* General memory — large and not as fast

External

 The memory interface is implemented

 The memory itself is a separate chip

© tj

: . N words x M bits/word
e VHDL solution for memories N array elements x SLV

* An array of std_logic_vectors
e Coded just like the non-optimized long array of data words

* Array construct

 New type, that has array type as its basis
type my_new_type is array (0 to depth) of some_vhdl_type

* Memory construct

e Uses std _logic_vector
* No understanding of the values (signed/unsigned) is assumed, just bits

type my_memory is array (0 to depth) of std_logic_vector((wordwidth - 1) downto 0);

ELE 3510 3 © tj

* SRAM - flipflop based

e Using flipflops as our memory storage element

e The inferred memories on our FPGA all require
synchronous read paths

* To force a flipflop based memory the read path must be
asynchronous

* Since we want flipflops, we must have some clock
controlling the memory

* Make the write path synchronous
* Outputs of the flipflops are always available

ELE 3510 4 © tj

. 64 d, 32b/w (4B FF based SRAM
* SRAM - flipflop based viord, SERRNER A IRe"
) 64 X 32b architecture behavioral of sram_regbased is

; -- create type
- type sram_type 1is array (0 to (mem_depth - 1)) of std_logic_vector ((mem_width - 1) downto 0);
-- sram_regbased.vhdl _Z

- -- create memory

-- created 4/25/17

-- tj signal mySRAM: sram_type;
--rev 0 begin
-- synchronous RAM built with registers -- SRAM write process

process(i_cTk)
begin
if (rising_edge(i_c1k)) then

-- Inputs: c¢lk, addr, we_b, data_in

. -- write logic
T Outputs: data_out if(i_we_b =70") then Synchronous write
17 mySRAM(to_integer(unsigned(i_addr))) <= i_data_in;
S TTTTTTITTTTTTTTTTTTTTTTToToooosoeooees end if; to force FFs
Tibrary ieee; end if:
use ieee.std_logic_1164.al11; end process;

use ieee.numeric_std.all;
use ieee.math_real.all; _
-- SRAM asynchronous read

hentity sram_regbased 1is

; -- , ,) Asynchronous read
H generic(o_data_out <= mySRAM(to_integer (unsigned(i_addr)));

mem_width: positive := 32; to prevent inferred memory
mem_depth: positive := 64 end behavioral;
| port(
i_clk: in std_logic;
i_we_b: in std_logic;
i_addr: in std_Togic_vector (((integer (ceil(log2(real(mem_depth))))) - 1) downto 0);
i_data_in: 1in std_logic_vector ((mem_width - 1) downto 0);
o_data_out: out std_logic_vector((mem_width - 1) downto 0)

b
end entity; 64 words X 32 bits
64 words X 4 Bytes
64x4x8 bits = 2048 flipflops

ELE 3510 5 © tj

* SRAM - register based
* 64x32b

There is an RTL model for this memory

The implementation is in flipflops

mySRAM

i_clk[>——{CLKO
1'h0

CLR1

i_data_in[31..0] [_)—————{DATAIN[31.0]
1'h1]

ENA1 DATAOUT[31.0l—{ > o_data_out[31.0]
i_addr[5..0] D—: RADDRI[5..0]
WADDR[5..0]

iwe b[D>—dWE

SYNC_RAM

ELE 3510 6

® <<Filter>>

Flow Status

Quartus Prime Version
Revision Name
Top-level Entity Name
Family

Device

Timing Models

Total logic elements
Total registers

Total pins

Total virtual pins

Total memory bits

Total PLLs
UFM blocks
ADC blocks

Embedded Multiplier 9-bit elements

Successful - FriMay 15 11:1
19.1.0 Build 670 09/22/201
Class_Examples

sram_regbased
MAX 10
T10M50DAF484C7G

Final

© tj

* SRAM —re

gister based — test bench

* 64x32b |,

- Initalize values Not all addresses tested

end

Run Process

Process -- note - no sensitivity 1ist allowed

ADDR <= (others => '0");
DATA_IN <= (others = '0");

WEE <= '1'; Not all bit values tested

-- Read from a few addresses
for i in 0 to 9 Toop

wait for 2*PER;

dAI_:I)DR <= std_logic_vector(to_unsigned(i*250, (integer(ceil(log2(real (mem_depth)))))));
en oop;

-- Write to a few addresses

for 1 in 0 to 9 Toop
wait for 1*PER;
ADDR <= std_logic_vector(to_unsigned(i*250, (integer(ceil(log2(real (mem_depth)))))));
DATA_IN <= std_logic_vector(to_unsigned(i*5, mem_width));

WE_B <= '0'";

wait for 1¥PER;

WE_B <= "1";
end Toop;

-- Read from a few addresses
for i in 0 to 9 Toop

wait for 2*PER;

ADDR <= std_logic_vector(to_unsigned(i*250, (integer(ceil(log2(real (mem_depth)))))));
end loop;
process run;

g Wave - Default

—t t T 1 T T T 11 L_I pifpn LJ Lo | [LJ LJ

:):EEEEEI}E 45

fsram_128b_th/CLK

Jsram_128b_th/ADDR
Jsram_128b_th/WE_E

as [[[[[]
o5 {0 (45 30 25 (50 ({35 [0 yf45 Yo Y5 Yio [{35 Jo0 y&5 ¥30] {55 [{40 |

fsram_128b_th/DATA_IN :ﬁ:ﬁ 10 fis Yoo | fo5 [Y30 f3s Yai &

fsram_128b_tb/DATA_OUT 5 o s @y =5 E A

ELE 3510

25 | . 130, 135 |

[y [y)y ey)y)y ey o sy vy

ELE 3510

* Memory Test Benches

* A proper memory testbench would test:
* All addresses
 AllbitsOand 1
 Read ROMs, R/W for RAMs
 Write_enable_bar functionality

© tj

	Slide 1: VHDL Memories Flip-Flop Based
	Slide 2: VHDL Memories – Flip-Flop Based
	Slide 3: VHDL Memories – Flip-Flop Based
	Slide 4: VHDL Memories – Flip-Flop Based
	Slide 5: VHDL Memories – Flip-Flop Based
	Slide 6: VHDL Memories – Flip-Flop Based
	Slide 7: VHDL Memories – Flip-Flop Based
	Slide 8: VHDL Memories – Flip-Flop Based

