Last updated 8/19/24

ELE 3510

* The process construct allows portions of the VHDL
code to be executed only under certain conditions

* The code is only executed when a signal in its sensitivity
list has changed

* See example

* The process construct allows the more flexible
if/else and case statements to be used

* The process construct ONLY updates sequential
signals at the end of the process

e See example

e Structure

Optional label
Cannot be a duplicate
of any other process
label or signal name

ELE 3510

label process (sensitivity list)
begin
hdl code
end process;

Sensitivity list
The process block is not
evaluated unless a
signal in the sensitivity
list has changed

© tj

* The code is only executed when a signal in its
sensitivity list has changed — correct version

process(i_clk, i_rstb) < Note: i_rstb IS in sensitivity list
egin
2 if{i_rsth = "0") then
X == "07; s
y <= '0": | » ExpectY > lwheni_rstb > 1
elsif(i_rstb = "1') then —
y <= "L%
elsif(rising_edge(i_clk)) then
X e= "1";
== X;
end 1f;
end process;

ELE 3510 4 © tj

ELE 3510

* The code is only executed when a signal in its
sensitivity list has changed — incorrect version

Eru;ess(i_c1k} <
egin
if{i_rsth =
X == "0";
}.r = ll:ll;
elsif(i_rsth
o= ‘J_‘;
elsif(rising_
¥ o= "1
¥ = X
end 1f;
end process;

'0') then

|

edge(i_c1k)) then

Note: i_rstb is NOT in sensitivity list

. » ExpectY 2> 1wheni_rstb > 1
but

The process is only called by i_clk
SO

the change ini_rstb is not seen until the
next clock edge

© tj

* The code is only executed when a signal in its

sensitivity list has changed

EFDCESS('i _clk, 1_rsth) rocess{i_cTk)
egin Eeg‘m
if(i_rstb = "0") then if(i_rstb = "0") then
X <= "07; X == 'Ij :
y <= '0° <= '0'
elsif(i_ rstb = "1") then e15¥1=(1 rstb = "1") then
y == "1 Y <= l
e151f(r1.1r31 edge(i_clk)) then elsif(rising_edge(i_clk)) then
X == 17, ¥ oe= "1";
¥, ==X = X;
end if; endyﬂi, X
end process; end process;

* These create the same RTL solution but different
simulation solutions — we verify by simulation so
the final design may not work as intended

ELE 3510 6 © tj

ELE 3510

* Processes update sequential signals at the end of

the process

Ero;ess(i_c1k, i_rsth)
egin
if(i_rsth = "0') then

X <= "07;
y <= 0%
elsif(rising_edge(i_clk)) then
¥ <= "1";
y <= "17;
end 1f;

end process;

\ These appear to do the same thing:
/ Set x and y = 1 at the same time

rocess(i_clk, i_rsth)

egin
if(i_rsth = "0") then
X == "07;
y <= '0%;
elsif(rising_edge(i_clk)) then
X <= "1";
<= X3
endyﬁf;

end process;

© tj

* Processes update sequential signals at the end of

the process

Erogess(i_ch, i_rsth)
egin

end process;

if (i rStb = '0') then
x <= '0°
<= "0’
e1s1f(r1g1nu edge(i_clk)) then
X == "1";
<= "1";
end if;

Expected result:
X, y =2 1 at the same time

\ These appear to do the same thing:
/ Set x and y = 1 at the same time

rocess(i_clk, i_rsth)
egin
1f(1 rstb = '0") then
<= "0"
<= "0"

X == "1°
Y <= X;
end if;

end process;

AN

Y
9151f(r131nu edge(i_clk)) then

S

Unexpected (but correct) result:

y is not updated to the value
of x until the next clk

X has not been changed to 1 at this point
It only becomes 1 at the end of the process

ELE 3510

8

x~reg0
1%10
i_clk[> ak a—— »x
1 thCLR
CLRN
i_rstb[> T
y~reg0
Tth
ak ao——/
1h0 Y
—|SCLR
CLRN
i_dk[> [x
x~reg0 y~reg0
Thil D
LCLK Q N FCK af—[by
1'h0 lscLr 1'h0 scLr
CLRN CLRN
i_rstb[>

© tj

ELE 3510

* Warning — Warning — Warning

* |f you do not complete an if-else with an else, a latch will
be created

* If you do not cover all cases in a case statement, a latch
will be created

* All paths/cases must be covered
* The compiler will always warn you it created a latch

We do not want latches - EVER

| can see a latch in an RTL diagram from a mile away

The FF construct is one of very few exceptions

9

© tj

	Slide 1: VHDL Process Construct
	Slide 2: VHDL Process Construct
	Slide 3: VHDL Process Construct
	Slide 4: VHDL Process Construct
	Slide 5: VHDL Process Construct
	Slide 6: VHDL Process Construct
	Slide 7: VHDL Process Construct
	Slide 8: VHDL Process Construct
	Slide 9: VHDL Process Construct

