Last updated 8/20/24

This is not a programming language It is a hardware description language

- A VHDL signal represents a wire
 - A single wire is identified as a std_logic signal

Declaration

```
signal in1: std_logic;
signal in2: std_logic;
signal out1: std_logic;
```

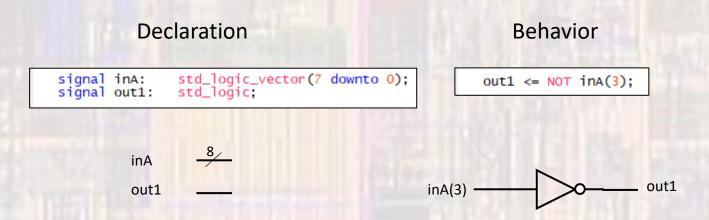
in1 ——
in2 ——
out1 ——

Behavior

out1 <= in1 AND in2;

- A VHDL signal represents a wire
 - A bus (collection of wires) is identified as a std_logic_vector signal
 - Includes the dimension of the bus in wire order 7 6 5 4 3 2 1 0
 - Format: std logic vector((n-1) downto 0)

Declaration


inA 8/
inB 8/
out_AB 8/

Behavior

out_AB <= inA OR inB;

- Individual wires in a bus can be identified
 - signal_name(wire number)

- Contiguous wires in a bus can be identified
 - signal_name(wire range)
 - Format: signal_name(n downto m)

Declaration

Behavior

```
signal inA: std_logic_vector(7 downto 0);
signal out1: std_logic_vector(3 downto 0);
```

```
out1 <= NOT inA(6 downto 3);
```

© ti

```
inA \frac{8}{} out1 \frac{4}{}
```

- Wires and buses can be combined to create a new signal (bus) <u>name</u>
 - No new wires are created just connected to an additional name
 - Concatenation operator &

Declaration

Behavior

new_bus <= inA & in1 & inB;

new_bus: inA(7), inA(6), ... inA(0), in1, inB(3), ...inB(0)