Last updated 4/18/24

POTS

- Plain Old Telephone Service
- ca. 1877 → mid 1980's in US
- Still used in many countries
- Wired analog communication
 - 2 wires local loop
 - Full duplex

src: nationalww2museum.org

- POTS Electrical Operation
 - T tip line
 - R ring line
 - CO central office
 - Outgoing call
 - Pick up handset \rightarrow Hook switch \rightarrow closed
 - Current flows → sensed by the current sensor
 - CO generates a dial tone on the line
 - CO connects digit decoder to the line
 - CO connects calling line to Receiving line
 - Voice coil and speaker signals transferred between handsets
 - Incoming call
 - CO generates a ring signal
 - Answered \rightarrow Hook switch \rightarrow closed
 - Current sensor stops the ring and connects the lines
 - Voice coil and speaker signals transferred between handsets

- Broadcast Radio
 - Transmit only
 - Line of sight
- Earliest radio-phones
 - 1946
 - FM push to talk
 - Single high-powered transmitter
 - Several smaller receive locations
 - <u>https://youtu.be/xDy2tHCPdk8</u> (10 minutes sorry about the ads)
 - Very limited subscriber numbers
 - Wide BW signals, narrow available BW → few channels

- Tx/RX sequencing
 - Simplex
 - Receive or transmit only
 - Garage door opener
 - Pagers
 - Broadcast radio and TV
 - Half duplex
 - non- simultaneous Rx/Tx
 - Walky-talky
 - Full duplex
 - Simultaneous Rx/Tx (effectively)
 - Cellular

- Mobile Radio
 - Full Duplex Methods
 - FDD Frequency Division Duplex
 - Separate frequencies used for transmit and receive
 - TDD Time Division Duplex
 - Send and receive "packets" separated in time
 - Requires the information sent/received is small compared to the channel's capacity
 - Requires "real time" information to be low BW compared to the packet BW
 - Terms
 - Station to user forward channel downlink
 - User to station reverse channel uplink

- Cellular
 - Transmitter
 - Fixed location
 - Range dependent on transmission power
 - Range varies with
 - Atmospheric conditions
 - Geographic topology
 - Man made structures

best case transmission range

reliable transmission

range

- Cellular
 - Transmitter Positioning
 - Common frequency

Common Frequency

No interference GAPS !

Common Frequency

Interference ! GAPS !

Common Frequency

INTERFERENCE ! No gaps

Cellular

- Transmitter Positioning
 - Non-common frequencies

4 frequencies

No interference No gaps 64 frequencies 16 per transmitter (co-channels)

No interference No gaps

- Cellular
 - Transmitter Positioning
 - Non-common frequencies

1

1

- N frequency groups
 - N = 4

1

1

1

1

1

3

3

3

3

Cellular

- Transmitter(s)
 - D distance between cell centers using the same frequencies(channels)
 - R radius of a cell
 - N number of cells in a pattern
 - N = 1, 3, 4, 7, 9, 12, 13, 16, 19, ... N = $I^2+J^2+(IxJ)$ I, J = 0, 1, 2, ...
 - D/R = (3N)^{1/2}
 - Example:
 - Assume 5 co-channels/cell, 25 users/channel at one time, desire to support 625 users in a 25km² area (circular)
 - With a N = 9 system, what would the value of D be?
 - 625 users, 25/channel → 25 channels → 5 cells
 - $5 \times 2^* PI^* R^2 = 25 km^2 \rightarrow R = 0.89 km$
 - D = 4.64km

- Capacity expansion
 - Add new channels to a cell
 - Assign unused frequencies
 - Frequency borrowing
 - Assign channels from an adjacent (less loaded) cell
 - Can be done dynamically
 - Can impact the broader reuse pattern
 - Cell 1 borrows from cell 4 may impact the next nearest cell 4
 - Cell splitting
 - Shrink the footprint
 - More cells in a given area → more capacity
 - More towers
 - More handoffs
 - Cell sectoring
 - Break the cell into radial sectors (3 or 6 typically)
 - Each sector can use all (most) co-channels independently
 - ~3x or 6x capacity
 - Requires directional antennas

2

1

3

1