Diodes

Last updated 1/10/24

Ideal Diode Equation

$$I_D = I_S \left[e^{\left(\frac{qV_A}{nkT}\right)} - 1 \right] = I_S \left[e^{\left(\frac{V_A}{nV_T}\right)} - 1 \right]$$

$$I_S = qA \left[\frac{D_N}{L_N} n_{p0} + \frac{D_P}{L_P} p_{n0} \right]$$

Proportional to Area (A) Inversely proportional to Doping (n_{po}, p_{no}) Typically, $10^{-12}A - 10^{-18}A$

Accounts for non-idealities Typically, between 1 and 2

 $V_T \cong 26mV @ RT$

n

 $V_T = \frac{q}{kT}$

Real diode behavior

Real diode behavior

 $V_D > V_Z$ $I_D = I_S \left(e^{\frac{V_D}{nV_T}} - 1 \right)$

- Ideal diode models
 - Switch model

	Forward Bias
Reverse Bias	Threshold voltage = 0V

- Ideal diode models
 - Switch model with Turn-on voltage

- Ideal diode models
 - Piecewise Linear model

- Small Signal Model
 - Consider the I-V characteristics constant

Small Signal Model

small $\Delta v \rightarrow$ large Δi $I_D - DC$ current $V_D - DC$ voltage $i_d - small signal current$ $v_d - small signal voltage$ $\frac{1}{\sqrt{c_d}} \stackrel{l}{\longleftrightarrow} \stackrel{l}{\underset{d}{\longrightarrow}} \stackrel{l}{\underset{d}{\underset{d}{\longrightarrow}} \stackrel{l}{\underset{d}{\underset{d}{\longrightarrow}} \stackrel{l}{\underset{d}{\underset{d}{\longrightarrow}} \stackrel{l}{\underset$

large $\Delta v \rightarrow$ small Δi

$$i_{d} = \left(\frac{I_{D}}{V_{T}}\right)v_{d} = \left(\frac{1}{r_{d}}\right)v_{d}$$
$$r_{d} = \left(\frac{V_{T}}{I_{D}}\right)$$

 C_j – Junction Capacitance C_d – Diffusion Capacitance

 C_j – dominant in reverse bias C_d – dominant in forward bias

 In forward bias, carriers are traversing the depletion region and create an excess of minority carriers in the N and P regions

- Switching from forward bias to reverse bias
 - Excess minority carriers must be removed
 - → reverse (negative) current flow
 - Amplitude is a function of V_F and minority carrier lifetimes
 - Storage Time t_s
 - Time for concentrations to reach their OV bias level
 - Recovery Time t_r
 - Time for concentrations to reach their reverse bias level
 - Reverse Recovery Time t_{rr}
 - Sum of t_s and t_r

- Switching from reverse bias to forward bias
 - No excess minority carriers to be removed
 - → No storage time
 - Fast transitions

© tj

Simulation Example – 15V

- "Exact" Solution
 - Transcendental Equation
 - You have the tools to solve this

 I_{S} = 5.3e-15, n = 1, V_{batt} = 3.3V, R = 1KΩ V_{D} = 0.6999V, I_{D} = 2.601mA

- Ideal Solution
 - $V_D = V_{Th} = 0V$

 $V_{Batt} = I_D R + V_D$ $V_{Batt} = I_D R$ $I_D = V_{Batt} / R$

 $V_{batt} = 3.3V, R = 1K\Omega, \forall_{TH} = 0.7V, R_F = 5\Omega$ $I_D = 3.3mA$

- Ideal Solution (with V_{Th})
 - V_D = V_{Th} = 0.7V

 $V_{Batt} = I_D R + V_{Th}$ $I_D = (V_{Batt} - V_{Th})/R$

 $V_{batt} = 3.3V$, R = 1K Ω , $V_{TH} = 0.7V$, $\frac{R_F}{R_F} = 5\Omega$ $I_D = 2.60$ mA

- Piecewise Linear Solution
 - $V_{Th} = V_{v} = 0.7V$
 - R_F = 5Ω

$$V_{Batt} = I_D R + I_D R_F + V_{Th}$$
$$I_D = (V_{Batt} - V_{Th})/(R + R_F)$$

 V_{batt} = 3.3V, R = 1K Ω , V_{TH} = 0.7V, R_F = 5 Ω I_D = 2.587mA

Comparison		$V_{Batt} = I_S \left(e^{\frac{V_D}{nV_T}} - 1 \right)_R + V_D$
Exact	Simulate instead	I_{s} = 5.3e-15, n = 1, V_{batt} = 3.3V, R = 1K Ω V_{D} = 0.6999V, I_{D} = 2.601mA
		$V_{Batt} = I_D R$
Ideal	Only acceptable for determining functionality	$V_{\text{batt}} = 3.3 \text{V}, \text{R} = 1 \text{K}\Omega, \forall_{\text{TH}} = 0.7 \text{V}, \text{R}_{\text{F}} = 5\Omega$ $I_{\text{D}} = 3.3 \text{mA}$
Ideal w/V _{Th}	The best choice for almost all situations	$V_{Batt} = I_D R + V_{Th}$ $V_{batt} = 3.3V, R = 1K\Omega, V_{TH} = 0.7V, R_{F} = 5\Omega$ $I_D = 2.60 \text{mA}$
Piecewise line	ar	$V_{Batt} = I_D R + I_D R_F + V_{Th}$ $V_{batt} = 3.3V, R = 1K\Omega, V_{TH} = 0.7V, R_F = 5\Omega$ $I_D = 2.587mA$

- Schottky Barrier Diode
 - Metal Semiconductor junction
 - Lower turn on voltage (0.2V to 0.3V)

- Zener Diode
 - Well managed breakdown voltage

I

- Light Emitting Diode
 - Direct bandgap semiconductor
 - When holes and electrons recombine in the bulk region photons are emitted
 - Typically higher turn on voltages (1.2V 1.8V)

- Photo Diode
 - P-I-N Diode
 - I is an intrinsic layer
 - Light applied to the intrinsic layer creates hole-electron pairs
 - These holes and electrons are swept away due to the electric field → current

Solar Cell

