Diodes

Last updated 1/10/24

Ideal Diode Equation

$$
\begin{aligned}
& I_{D}=I_{S}\left[e^{\left(\frac{q V A}{n k T}\right)}-1\right]=I_{S}\left[e^{\left(\frac{V A}{n V_{T}}\right)}-1\right] \\
& I_{S}=q A\left[\frac{D_{N}}{L_{N}} n_{p 0}+\frac{D_{P}}{L_{P}} p_{n 0}\right] \quad \begin{array}{l}
\text { Proportional to Area (A) } \\
\text { Inversely proportional to Doping }\left(\mathrm{n}_{\mathrm{po}}, \mathrm{p}_{\mathrm{no}}\right) \\
\text { Typically, } 10^{-12} \mathrm{~A}-10^{-18} \mathrm{~A}
\end{array}
\end{aligned}
$$

Accounts for non-idealities
Typically, between 1 and 2
$V_{T}=\frac{q}{k T}$

$$
V_{T} \cong 26 \mathrm{mV} @ R T
$$

Diode Models

- Real diode behavior

Diode Models

- Real diode behavior

Diode Models

- Ideal diode models
- Switch model

Diode Models

- Ideal diode models
- Switch model with Turn-on voltage

Diode Models

- Ideal diode models
- Piecewise Linear model

Diode Models

- Small Signal Model
- Consider the I-V characteristics constant

Diode Models

- Small Signal Model

small $\Delta v \rightarrow$ large Δi
large $\Delta v \rightarrow$
small Δi
$I_{D}-D C$ current
$V_{D}-D C$ voltage
i_{d} - small signal current
v_{d} - small signal voltage

$$
\begin{aligned}
& i_{d}=\left(\frac{I_{D}}{V_{T}}\right) v_{d}=\left(\frac{1}{r_{d}}\right) v_{d} \\
& r_{d}=\left(\frac{V_{T}}{I_{D}}\right)
\end{aligned}
$$

C_{j} - Junction Capacitance
C_{d} - Diffusion Capacitance
C_{j} - dominant in reverse bias
C_{d} - dominant in forward bias

Diode Switching

- In forward bias, carriers are traversing the depletion region and create an excess of minority carriers in the N and P regions

Forward Bias

- Switching from forward bias to reverse bias

- Excess minority carriers must be removed
- \rightarrow reverse (negative) current flow
- Amplitude is a function of V_{F} and minority carrier lifetimes
- Storage Time - t_{s}
- Time for concentrations to reach their OV bias level
- Recovery Time - t_{r}
- Time for concentrations to reach their reverse bias level
- Reverse Recovery Time - $t_{r r}$
- Sum of t_{s} and t_{r}

Forward Bias

Turn Off

- Switching from reverse bias to forward bias
- No excess minority carriers to be removed
- \rightarrow No storage time
- Fast transitions

- Simulation Example - 5V

- Simulation Example - 15V

Diode Circuit Analysis

- "Exact" Solution
- Transcendental Equation
- You have the tools to solve this

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{S}}=5.3 \mathrm{e}-15, \mathrm{n}=1, \mathrm{~V}_{\text {batt }}=3.3 \mathrm{~V}, \mathrm{R}=1 \mathrm{~K} \Omega \\
& \mathrm{~V}_{\mathrm{D}}=0.6999 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.601 \mathrm{~mA}
\end{aligned}
$$

Diode Circuit Analysis

- Ideal Solution
- $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{Th}}=0 \mathrm{~V}$

$$
\begin{aligned}
& V_{\text {Batt }}=I_{D} R+V_{D} \\
& V_{\text {Batt }}=I_{D} R \\
& I_{D}=V_{B a t t} / R \\
& \begin{array}{l}
V_{\text {batt }}=3.3 \mathrm{~V}, R=1 \mathrm{~K} \Omega, \forall_{\text {TH }}=0.7 \mathrm{~V}, R_{F}=5 \Omega \\
I_{D}=3.3 \mathrm{~mA}
\end{array}
\end{aligned}
$$

Diode Circuit Analysis

- Ideal Solution (with $\mathrm{V}_{\text {Th }}$)
- $V_{D}=V_{\text {Th }}=0.7 \mathrm{~V}$

$$
\begin{aligned}
& V_{B a t t}=I_{D} R+V_{T h} \\
& I_{D}=\left(V_{B a t t}-V_{T h}\right) / R
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\text {batt }}=3.3 \mathrm{~V}, \mathrm{R}=1 \mathrm{~K} \Omega, \mathrm{~V}_{T H}=0.7 \mathrm{~V}, \mathrm{R}_{F}=5 \Omega \\
& \mathrm{I}_{\mathrm{D}}=2.60 \mathrm{~mA}
\end{aligned}
$$

Diode Circuit Analysis

- Piecewise Linear Solution
- $\mathrm{V}_{\text {Th }}=\mathrm{V}_{\mathrm{Y}}=0.7 \mathrm{~V}$
- $R_{F}=5 \Omega$

$$
\begin{aligned}
& V_{\text {Batt }}=I_{D} R+I_{D} R_{F}+V_{T h} \\
& I_{D}=\left(V_{\text {Batt }}-V_{T h}\right) /\left(R+R_{F}\right) \\
& \begin{array}{l}
V_{\text {batt }}=3.3 \mathrm{~V}, \mathrm{R}=1 \mathrm{~K} \Omega, V_{\text {TH }}=0.7 \mathrm{~V}, \mathrm{R}_{F}=5 \Omega \\
\mathrm{I}_{\mathrm{D}}=2.587 \mathrm{~mA}
\end{array}
\end{aligned}
$$

Diode Circuit Analysis

- Comparison

$$
\begin{aligned}
& V_{\text {Batt }}=I_{S}\left(e^{\frac{V_{D}}{n V_{T}}}-1\right)_{R+V_{D}} \\
& I_{S}=5.3 \mathrm{e}-15, \mathrm{n}=1, \mathrm{~V}_{\text {batt }}=3.3 \mathrm{~V}, \mathrm{R}=1 \mathrm{~K} \Omega \\
& \mathrm{~V}_{\mathrm{D}}=0.6999 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.601 \mathrm{~mA}
\end{aligned}
$$

Piecewise linear

$$
\begin{aligned}
& V_{\text {Batt }}=I_{D} R+I_{D} R_{F}+V_{T h} \\
& \mathrm{~V}_{\text {batt }}=3.3 \mathrm{~V}, \mathrm{R}=1 \mathrm{~K} \Omega, \mathrm{~V}_{T H}=0.7 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=5 \Omega \\
& \mathrm{I}_{\mathrm{D}}=2.587 \mathrm{~mA}
\end{aligned}
$$

Other Diodes

- Schottky Barrier Diode
- Metal - Semiconductor junction
- Lower turn on voltage (0.2 V to 0.3 V)

Other Diodes

- Zener Diode
- Well managed breakdown voltage

- Light Emitting Diode
- Direct bandgap semiconductor
- When holes and electrons recombine in the bulk region photons are emitted
- Typically higher turn on voltages (1.2V-1.8V)

$$
\frac{V_{0}}{1} \approx
$$

- Photo Diode
- P-I-N Diode
- I is an intrinsic layer
- Light applied to the intrinsic layer creates hole-electron pairs
- These holes and electrons are swept away due to the electric field \rightarrow current

