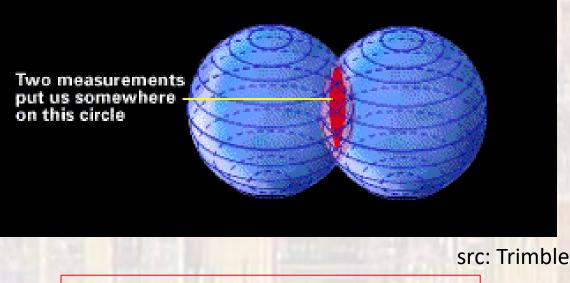
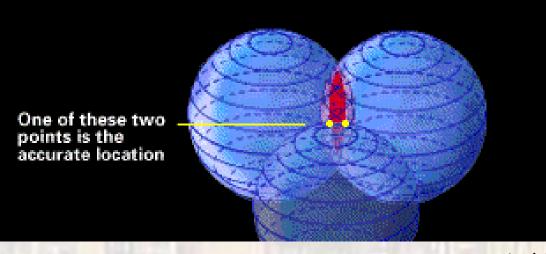

Last updated 3/7/24

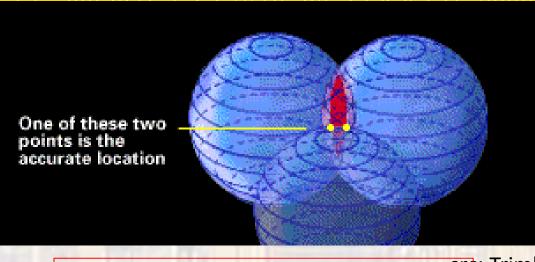

- The Basics
 - Measure distance using the travel time of radio signals
 - Need very accurate timing
 - Need to know exactly where the satellites are in space
 - Need to correct for any delays the signal experiences as it travels through the atmosphere
 - Use Trilateration to determine position
 - A method of determining the relative positions of objects using the geometry of triangles

- Trilateration
 - Determine a position using 3 satellites
 - Assuming we can measure distance with 1 satellite we know we are somewhere on the edge of the blue sphere – all points are 11,000 miles from the satellite


© ti

- Trilateration
 - Determine a position using 3 satellites
 - With 2 satellites we know we are somewhere on the edge of the circle where the two spheres touch – points are 11,000 miles from one satellite and 12,000 miles from the other

Note: this is a general analysis - GPS is not at these distances


- Trilateration
 - Determine a position using 3 satellites
 - With 3 satellites we know we are at one of two points where the three spheres touch – 11,000, 12,000, 13,000 miles from each satellite respectively

src: Trimble

Note: this is a general analysis - GPS is not at these distances

- Trilateration
 - Determine a position using 3 satellites
 - Generally one of the points is not realistic, leading to the proper position.
 - An additional satellite can be used if both solutions are realistic – leading to a single point

Note: this is a general analysis – GPS is not at these distancesrc: Trimble

- Distance Measurement
 - Using precise clocks
 - Satellite transmits a code sequence using radio waves
 - Pseudo-random code
 - Travel at the speed of light C
 - Receiver compares the code to a local copy
 - Time shift in the code \rightarrow distance measurement
 - d = C ∆t
 - When the satellite is directly overhead
 - d = 20,200Km
 - Δt ≈ 67.3ms

- Accurate Clocks
 - Satellites
 - Onboard Atomic Clocks
 - Tuned to the oscillations of a rubidium atom
 - Accurate to approximately 14ns
 - Receivers
 - Obviously can't have atomic clocks (> \$10K)
 - Use a 4th satellite signal
 - Assuming accurate satellite clocks, but an error in the receiver clock
 - All 4 signals will not match to a single location
 - Find the receiver clock time shift that makes all 4 match
 - receiver clock error correction → accurate position
 - As a side benefit, the receiver now has atomic clock accuracy

Satellite Location

- Placed high enough into space to conform to well known orbital mechanics - ~20,200Km
- Spaced such that 4 satellites are in view from anywhere on earth (typically 5 are visible)
- Pre-programmed with expected location information based on position and orbit
- Position and velocity monitored by very accurate radar by the Department of Defense
 - Errors are called ephemeris errors
 - Caused by gravitational pull of the sun and moon, and by solar flares
- Position updates transmitted to the satellite
 - New position included in the Pseudo-random transmission to be used by the receiver

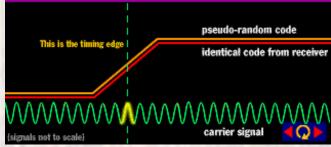
Errors and error correction

- Radio wave velocity varies as it traverses the path from satellite to ground
 - Ionosphere outer layer
 - Charged particles
 - Can be modeled but still results in errors
 - Troposphere inner layer subject to weather
 - Changes with water vapor, temperature, pressure
 - Hard to model but creates limited error
- Multi-path errors
 - Signal bounces off multiple objects near the ground
 - Causes multiple received signals slightly delayed from the direct path
 - Signal processing can largely manage these errors
 - Urban Canyons lots of multipath and limited satellite view

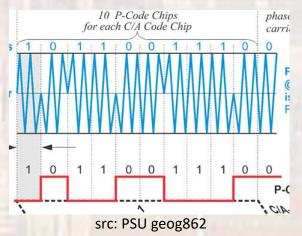
Errors and error correction

Standard GPS	
	Typical Error in Meters (per satellites)
Satellite Clocks	1.5
Orbit Errors	2.5
Ionosphere	5.0
Troposphere	0.5
Receiver Noise	0.3
Multipath	0.6

- Differential GPS
 - Add fixed location receivers
 - Known very accurate position
 - Place the fixed receivers close to areas where high accuracy is desired ~100mi
 - Harbors, railyards, truck depots, airports
 - GPS signals to the mobile receiver and fixed receiver traverse nearly the same paths and conditions
 - Use the Fixed receiver to measure all the errors except for multipath (localized)
 - Transmit the error correction factors to the mobile receiver via a radio channel

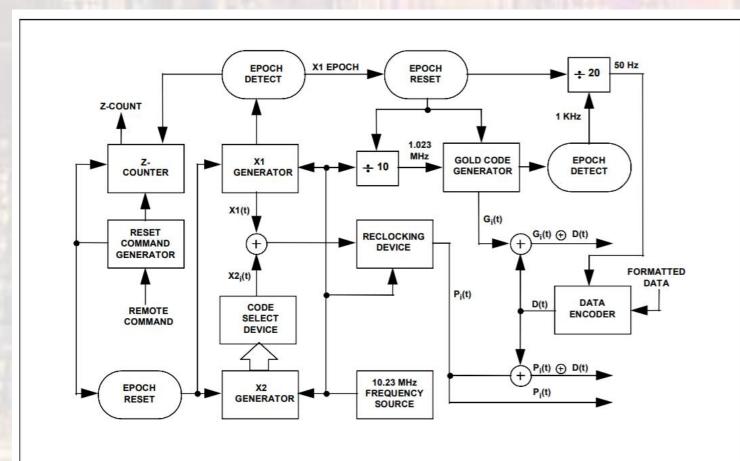

Differential GPS

Differential GPS	
	Typical Error in Meters (per satellites)
Satellite Clocks	0
Orbit Errors	0
onosphere	0.4
Froposphere	0.2
Receiver Noise	0.3
Multipath	0.6


- Signal Detection
 - Code phase compares pseudo random codes
 - Bit rates ~1MHz
 - 300m "wavelength"
 - With 99% match → Errors of a few meters

Carrier phase

- Match the carrier signals
- 1.56GHz → 19cm wavelength
- Use code phase matching to get close
- Enhanced circuitry to match the carrier signals
- With 99% carrier match \rightarrow 3-5 mm accuracy

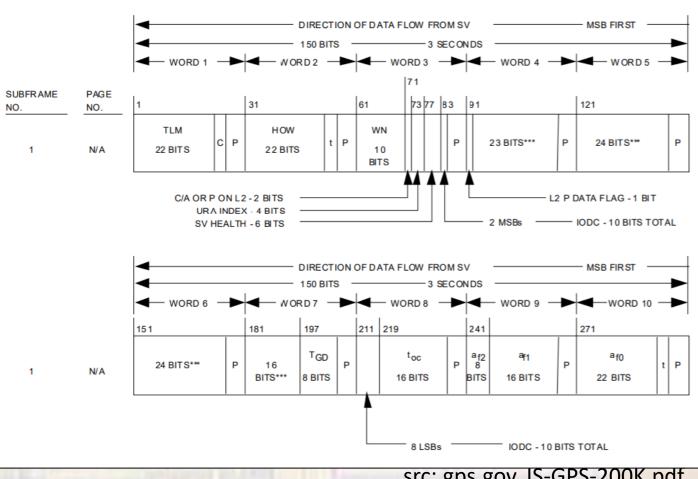


- Dual Frequency Transmission
 - Low-frequency signals get "refracted" or slowed more than high-frequency signals in a given medium
 - Compare the delays between two carriers (L1 and L2) to get an atmospheric correction value
 - Limited application because L2 is only available to the US military
 - Newer systems have included a second carrier L5, to allow dual carrier operation

- Pseudo-Random Code
 - The PRN P-code for SV ID number i, for i = 1 to 37, is a ranging code, Pi(t), of 7 days in length at a chipping rate of 10.23 Mbps. The 7 day sequence is the modulo-2 sum of two sub-sequences referred to as X1 and X2i; their lengths are 15,345,000 chips and 15,345,037 chips, respectively. The X2i sequence is an X2 sequence selectively delayed by 1 to 37 chips thereby allowing the basic code generation technique to produce a set of 37 mutually exclusive P-code sequences of 7 days in length.

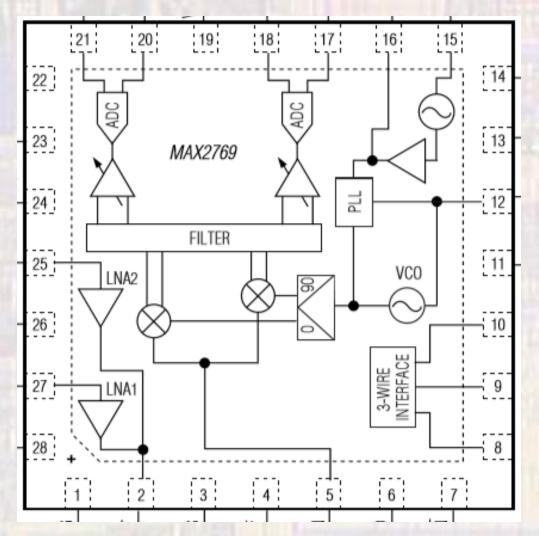
src: gps.gov, IS-GPS-200K.pdf

Signal generation



src: gps.gov, IS-GPS-200K.pdf

- Message Structure
 - The message structure shall utilize a basic format of a 1500 bit long frame made up of five subframes, each subframe being 300 bits long. Subframes 4 and 5 shall be subcommutated 25 times each, so that a complete data message shall require the transmission of 25 full frames. The 25 versions of subframes 4 and 5 shall be referred to herein as pages 1 through 25 of each subframe. Each subframe shall consist of ten words, each 30 bits long; the MSB of all words shall be transmitted first


src: gps.gov, IS-GPS-200K.pdf

- Message Structure
 - 1 of 11 structures

19

Chipsets – Maxim – basic receiver

- Chipsets Broadcom Full feature receiver
 - Supports two frequencies (L1+L5)
 - Integrated multi-frequency GNSS baseband and RF front end for simultaneous reception of GPS, GLONASS, BeiDou (BDS), Galileo (GAL), and SBAS satellite systems
 - Support for position batching, geofencing, sensor fusion and sensor navigation
 - ARM-based 32-bit Cortex-M4F (CM4)
 - ARM-based Cortex-M0 (CM0)

© ti