Hard Disk Drives Electro-Mechanical

Last updated 2/13/24

Hard Disk Drive - Electro-Mechanical

- History

- Magnetic Tapes
- Serial access
- 1955 - First Hard Disk Drive
- RAMAC - Random Access Method of Accounting Control

100 bits/in - inside track

55 bits/in - outside track

1s average access time

Hard Disk Drive - Electro-Mechanical

- History

- Disk Diameter

* Memory Systems, Jacob et. al.

Hard Disk Drive - Electro-Mechanical

- History

- Areal Density

Figure 40: Areal Density of Hard Disk and Tape Laboratory Demonstrations and Products [Relerence 71].

Src: JAP 117

Src: InSIC

Hard Disk Drive - Electro-Mechanical

- History

- Linear Density

* Memory Systems, Jacob et. al.

Hard Disk Drive - Electro-Mechanical

- History
- Units

Src: Forbes

Hard Disk Drive - Electro-Mechanical

- Fundamentals

- Rotating Storage Devices
- Phonograph - record
- Analog Storage
- Indentations in plastic
- CD/DVD
- Digital Storage
- Reflectivity of special coating
- Hard Disk Drive
- Digital Storage
- Magnetic Polarization

Hard Disk Drive - Electro-Mechanical

- Fundamentals
- Rotating Storage Devices
- Information is stored in rings around the disk
- Concentric
- Spiral
- Two values locate all information

Hard Disk Drive - Electro-Mechanical

- Fundamentals
- Rotating Storage Devices
- A movable Arm allows access for variable r
- Rotating Disk allows access to θ

Hard Disk Drive - Electro-Mechanical

- Fundamentals

- Rotating Storage Devices
- Multiple Disks
- 2 sided
- Multiple Read/write heads

Hard Disk Drive - Electro-Mechanical

- Fundamentals

- Disk Drive Physical Size
- Physical sizes are determined by the size of the enclosure - not the disk
- But not really the correct size - e.g. $3.5^{\prime \prime}$ drives are 4 " wide
- Common Sizes
- $3.5^{\prime \prime}-4^{\prime \prime} \times 5.75^{\prime \prime} \times 1^{\prime \prime}$
- $2.5^{\prime \prime}-2.75^{\prime \prime} \times 3.94^{\prime \prime} \times 0.75^{\prime \prime}$ with some low capacity drives as thin as 0.37"
- Less Common Sizes
- $1.8^{\prime \prime}, 1^{\prime \prime}$

Hard Disk Drive - Electro-Mechanical

- Fundamentals
- Disk Drive Performance
- Response Time - Average
- Time from command issue to transfer complete
- Dependent on type of operation
- R/W, sequential/non-sequential
- Throughput (Bandwidth)
- Data transfer rate
- MB/s
- Multiple requests
- Stored in a command queue
- Queueing Theory governs performance metrics

Hard Disk Drive - Electro-Mechanical

- Physical Layer
- Magnetism
- Movement of electrons in atoms \rightarrow moving charge
- Moving charge \rightarrow magnetic field
- In most materials
- Random orientation of atoms
- Random spin of the electrons
- \rightarrow cancelling of all the magnetic fields

Hard Disk Drive - Electro-Mechanical

- Physical Layer

- Magnetic Domains
- Small regions $1 \mathrm{~mm}^{3}$
- Materials with unpaired electrons \rightarrow net magnetic field
- Micro-structure of the material causes the magnetic fields to align
- In most materials these domains are random \rightarrow no net magnetism
- Ferro-magnetic materials

Hard Disk Drive - Electro-Mechanical

- Physical Layer

- Ferromagnetism
- Materials with magnetic domains
- When an external magnetic field is applied
- The magnetic fields of the domains align
- When the external magnetic field is removed
- The magnetic fields of the domains remain aligned
- Leaving behind a material that creates a net magnetic field
- The material has been magnetized

Hard Disk Drive - Electro-Mechanical

- Physical Layer

- Ferromagnetic Materials
- Magnetization Hysteresis
- Saturation - additional applied magnetic force will not increase the created magnetic field
- Retentivity - remnant
magnetization when the
 external field is removed
- Coercivity - amount of reverse magnetic force required to de-magnetize the material

Hard Disk Drive - Electro-Mechanical

- Physical Layer

- Ferromagnetic Materials
- Curie Temperature
- Above this temperature the magnetic domains will not remain aligned once the external field is removed
- Hard magnetic materials have wide hysteresis plots
- Good for recording media
- Soft magnetic materials have narrow hysteresis plots
- Good for recording head materials
- Easy axis
- Direction the material prefers to point to

- Disk want the easy axis to be parallel to the plane of the recording (disk)

Hard Disk Drive - Electro-Mechanical

- Writing
- Saving data in a digital representation
- Only need to know the direction of the induced magnetic field
- Define positive and negative in direction of the track
- Create an external field sufficient to induce saturation
- Maximizes the Retentivity
- Only need two values +/-

Hard Disk Drive - Electro-Mechanical

- Writing

Hard Disk Drive - Electro-Mechanical

- Reading

- Sense the very weak magnetic fields created by the magnetized regions in the material

- Information is NOT stored in the direction of the magnetization
- Information is stored in the transitions
- Transition $\rightarrow 1$
- No transition $\rightarrow 0$ direction

Independent of direction of change
Independent of the current magnetization

Hard Disk Drive - Electro-Mechanical

- Reading

- Requires some sort of clock or synchronization
- Writing must be done in blocks
- No way to just write a bit - need historical information
- Blocks for write are called sectors

Hard Disk Drive - Electro-Mechanical

- Disks
- Thin - maximize space utilization
- Light - minimize power required to rotate
- Rigid - low resonance
- Flat and Smooth - to allow heads to have fixed height
- No slapping
- Consistent R/W characteristics
- Hard magnetic material
- High retentivity - maximize S / N ratio
- High coercivity - maximize stability of written data

Hard Disk Drive - Electro-Mechanical

- Disks

- Substrate
- Typically Aluminum or an aluminum alloy
- Low cost
- Acceptable but not best in class smoothness
- Soft - easily damaged
- For small diameter disks glass or ceramics can be used
- These can be made very smooth, but can be brittle for larger sizes

Hard Disk Drive - Electro-Mechanical

- Disks

- Magnetic Layer
- Magnetic material composed of grains of magnetic domains
- Smaller grains
- Give better areal density
- Less magnetically stable
- Gamma ferric oxide, cobalt modified GFO, Chromium Dioxide, Barium ferrite
- Deposited through thin-film sputtering
- Allows for thin layers \rightarrow sharper transitions

Hard Disk Drive - Electro-Mechanical

- Disks

- Ni-P sublayer
- Harder than AL
- Allows for better polishing
- Cr Underlayer
- Interface for the magnetic coating
- Better microstructure than Ni-P
- Magnetic Layer
- Carbon overcoat

Lubricant	1 nm
Carbon Overcoat	10 nm
CO+Cr+... Magnetic Layer	25 nm
Cr Underlayer	50 nm
Ni-P Sublayer	$10 K \mathrm{~nm}$
AL-Mg Substrate	

- Protects the magnetic material from corrosion
- Prevents scratches and other damage
- Lubricant
- Prevent wear between head and disk should they touch

Hard Disk Drive - Electro-Mechanical

- Spindle Motors

- DC Motors
- Spindle integrated into the motor
- 3-phase, 8 pole typical
- Servo controlled
- Requirements
- High reliability
- Operate for many years
- Hundreds of thousands of start/stop cycles
- Low vibration / wobble
- Prevent head slaps
- Keep tracks aligned through rotation

Hard Disk Drive - Electro-Mechanical

- Write Head
- Inductive write head
- Ring (core) of magnetically soft material
- Small gap at one end
- Conductor wrapped around a portion of the ring

Hard Disk Drive - Electro-Mechanical

- Write Head

- Inductive write head

Hard Disk Drive - Electro-Mechanical

- Write Head
- Inductive write head - key features
- Small gap \rightarrow higher linear density (bits per inch) \rightarrow smaller side fields \rightarrow higher tracks per inch

- Narrow head \rightarrow higher number of tracks per inch
- Material needs high flux density to overwrite the disk material
- Low electrical inductance for fast bit transitions
- Mechanically strong - for the occasional head slap
- Light weight - to make it easy to support at the end of the head arm

Hard Disk Drive - Electro-Mechanical

- Write Head

- Thin Film - Inductive write head

Hard Disk Drive - Electro-Mechanical

- Read Head
- Can use the write head for reading
- Changes in the magnetic field on the disk cause a change in the magnetic flux of the head
- Changes in magnetic flux cause a voltage to be induced in the coil
- The voltage is then read by the read circuitry
- No longer used !

Hard Disk Drive - Electro-Mechanical

- Read Head

- Magnetoresistance
- Electrical resistance of a material changes when the material is subjected to an external magnetic filed

$$
\Delta \mathrm{R}=\mathrm{C}_{\mathrm{MR}} \cdot \mathrm{R} \cdot \cos ^{2} \theta
$$

$R=$ nominal resistance
$\mathrm{C}_{\mathrm{MR}}=$ magnetoresistive coefficient $\sim 2-3 \%$
$\theta=$ angle between the resulting internal magnetic field and the direction of current flow

Hard Disk Drive - Electrc

- Read Head
- MR Read Head

- We are looking for transitions \rightarrow external field is up or down
- Bias the easy axis to 0° wrt. the direction of current flow during manufacturing
- This puts ΔR at max in the middle of a bit
- This puts ΔR at min at the transitions
- Sense the change in voltage to read whether a transition has happened or not
- Physically shielded to ensure only one transition is detectable at a time

Hard Disk Drive - Electro-Mechanical

- Read Head

$$
\Delta \mathrm{R}=\mathrm{C}_{\mathrm{MR}} \cdot \mathrm{R} \cdot \cos ^{2} \theta
$$

Min $\Delta \mathrm{R}$ (some component wrt current flow)

Hard Disk Drive - Electro-Mechanical

- Read Head
- Giant Magnetoresistive Read Head (GMR)
- Uses semiconductor technology to create stacked layers
- $\Delta \mathrm{R}$ is $5-8 \%$ vs $2-3 \%$ for MR \rightarrow more sensitive

Hard Disk Drive - Electro-Mechanical

- Read/Write Head
- Combine the best of read and write technology
- Able to optimize both independently

Hard Disk Drive - Electro-Mechanical

- Read/Write Head

- Read head in front of write head
- Write wide - read narrow
- Write head is wider than read - writes a wider track
- Read head placement does not need to be perfect
- Builds in a guard band for noise

- Write width determined by the narrow pole of the write head
- Track pitch = write width + guard band
- Guard band protects adjacent tracks from being overwritten

Cross-track profile

Down-track profile

2D profile

Hard Disk Drive - Electro-Mechanical

- Write Head

- Vertical recording

SEM x-section image

Hard Disk Drive - Electro-Mechanical

- Read/Write Head
- Tracks per inch (tpi)

Tpi = 1/track pitch = 1/(W + guard band width $)$
W = write width
Guard band << W

- Flux change density
- Density of transitions
- $1 / B$, where B is the bit length
- Bits per inch (bpi)
- Assuming no coding - 1/B
- W to B ratio is approximately $4: 1$

Hard Disk Drive - Electro-Mechanical

- Read/Write Head

Hard Disk Drive - Electro-Mechanical

- Slider
- Holds the R/W heads in position over the disk
- Ride hydrodynamically on a cushion of air - air bearing
- Tuned to provide an optimum flight height
- Difficult due to the fact that the air is moving at different speeds at different radii.
- Rotates to a ramp when drive is not spinning so the head does not contact the ramp.

Hard Disk Drive - Electro-Mechanical

- Actuator

- Electromechanical actuator
- Rotates the sliders back and forth across the disk

Hard Disk Drive - Electro-Mechanical

- Actuator
- Movie

