ELE 4142

1) For the following RADAR system x Sm target could be detected at

$$
S_{\text {pulse }}=R F \frac{\sigma}{R^{4}} \quad R F-\text { radar factor }
$$ I suggest you put this in a spre I suggest you do your calculat

RADAR SYSTEM PARAMETERS
Peak Power
Antenna Aperture
Pulsed Signal Frequency
Pulse Width
Pulse Repetition Rate
Receiver Noise Bandwidth
Effective Noise Temperature
Typical system Losses
Antenna Rotation Rate
Azimuth Beamwidth
Antenna beam forming losses

$$
\begin{aligned}
R F_{\partial B}= & \text { power }+ \text { ant } 6-\text { Beam losses }+A_{n}+6-\text { Beam lasso }+\lambda+\lambda \\
& -11-11-11-k-T_{N}-B \omega-\text { losses }
\end{aligned}
$$

$S / N / d w e l l$, min for detection

$$
\begin{aligned}
R^{4}=\frac{{ }^{12} \frac{\mathrm{db}}{\mathrm{RI}_{\sigma}}}{\operatorname{sip}_{\text {Mise }}} & =202.55 \mathrm{~dB}+9.54 \mathrm{~dB}-(-1.52 \mathrm{Ji3}) \\
& =213.6 \mathrm{JB} \\
R=R^{4} / 4 & =53 J B \text { meters } \\
& =218902 \mathrm{~m} \\
& =219 \mathrm{~km}
\end{aligned}
$$

\qquad
2) Pipeline

The 4 stages of a data path have the following latencies
Stage 1: 200ps, Stage 2: 400ps, Stage 3: 300ps, Stage 4: 100ps
Pipelining these stages adds 20% to the latency of each stage
a) Should you create a pipeline or not? (show your work)

No Pipeline
Total time to execute an instruction is 1 ns
1×10^{9} instructions can be executed per second
Pipeline
Pipeline stages become
Stage 1: 240ps, Stage 2: 480ps, Stage 3: 360ps, Stage 4: 120ps
The longest time to complete a stage is 480ps
The clock cannot run faster than $1 / 480 \mathrm{ps}=2.0833 \mathrm{GHz}$
2.0833×10^{9} instructions can be executed per second
b) At what latency penalty (\%) does your decision change? (show your work)

> Matching the no pipeline case
> Max clock frequency $=1 \mathrm{GHz}$
> \rightarrow worst latency $=1 \mathrm{~ns}$
> $\rightarrow 400 \mathrm{~ns}+600 \mathrm{~ns} \rightarrow 150 \%$ pipeline latency penalty

