ELE 4142
HW1

1 - Identify each resistor value

2 - Plot the current in a P - N Diode vs V_{A} from -0.4 V to 0.8 V in 0.2 V increments. Assume $\mathrm{I}_{\mathrm{S}}=1 \mathrm{e}-11 \mathrm{~A}, \mathrm{n}=1.7$, and $\mathrm{V}_{\mathrm{T}}=26 \mathrm{mV}$

20 pts

$$
I=I_{S}\left[e^{\left(\frac{V_{A}}{n V_{T}}\right)}-1\right]=1 \times 10^{-11} A\left[e^{\left(\frac{V_{A}}{1.7 \times 0.026 V}\right)}-1\right]
$$

ELE 4142
HW1
Name

3 - ELE 2610 is switching to a new STM part (STM32U575xx) this year. The data sheet for this part family is linked on the HW page. Below is a picture of the part as implemented on the development board. Answer the following questions:
$\begin{array}{ll}\text { Package type (be specific): } & \text { LQFP144 } \\ \text { What does the L stand for: } & \text { Low Profile }\end{array}$ Circle PIN 1 How tall is this part (mm): How many pins are dedicated to: VDD 9 GND/VSS 11
 What is the allowed temperature range for this part -40 to $85^{\circ} \mathrm{C}$ What is the $\mathrm{ESD}_{\text {нвм }}$ rating for this part 2000 V Compare the required board area for this part vs the UFBGA169 with more pins available

```
22mm x 22mm = 484mm2
    vs
7mm x 7mm = 49mm
~ 10x board area
```

4 - ELE 2610 is switching to a new STM part (STM32U575xx) this year. The data sheet for this part family is linked on the HW page. Operating this part at $3.3 \mathrm{~V}, 160 \mathrm{MHZ}$, and using a specific program profile the part dissipates 1 W internally. While most of the I/Os drive CMOS gates, 10 of them drive $10 \mathrm{~K} \Omega$ resistors tied to gnd.

30 pts
Determine the worst-case junction temperature this part would reach.

$$
\begin{aligned}
& \theta_{\mathrm{JA}}=35.9^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{~T}_{\text {Amax }}=85^{\circ} \mathrm{C} \\
& \mathrm{PD}_{\text {int }}=1 \mathrm{~W} \\
& \mathrm{PD}_{1 / \mathrm{O}}=10 *(3.3 \mathrm{~V})^{2} / 10 \mathrm{~K} \Omega=10.9 \mathrm{~mW} \text { (heat is external) } \\
& \mathrm{PD}_{\text {tot }}=1.0 \mathrm{~W} \\
& \mathrm{~T}_{J}=\mathrm{T}_{\text {Amax }}+\mathrm{PD}_{\text {tot }} * \theta_{\mathrm{JA}}=85^{\circ} \mathrm{C}+1.0 \mathrm{~W} * 35.9^{\circ} \mathrm{C} / \mathrm{W}=121^{\circ} \mathrm{C}
\end{aligned}
$$

Is this a problem? If yes, why?

$$
\text { Yes - exceeds the max value for } T_{J}=105 \mathrm{C} \text { for designation } 6
$$

