1 - Sketch out the transfer characteristic of this circuit Vout vs Vin for Vin ranging from 0 V to 5 V . Assume $\mathrm{V}_{\text {Don }}=0.7 \mathrm{~V}$. Be sure to identify notable voltages and slopes.

20pts

2 - Select values for R1 and R2 in the circuit below. The output voltage should be 1.6 V with a < 10% error to loads greater than $15 \mathrm{~K} \Omega$ 20pts

10\% error forces R2 || Rload to be between 0.9R2 and 1.1R2
With Rload $>=15 \mathrm{~K} \Omega, \mathrm{R} 2$ must be $<.111$ Rload $=1.66 \mathrm{~K} \Omega$
Choose $1 \mathrm{~K} \Omega$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=1.6 \mathrm{~V} / 1 \mathrm{~K} \Omega=1.6 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{B}}=16 \mathrm{uA} \\
& \mathrm{~V}_{\mathrm{R} 1}=3.3 \mathrm{~V}-0.75 \mathrm{~V}=2.55 \mathrm{~V} \\
& \mathrm{R} 1=\mathrm{V}_{\mathrm{R} 1} / \mathrm{I}_{\mathrm{B}}=159,375 \Omega
\end{aligned}
$$

3 - Design a first order active low pass filter with a cutoff frequency of 30 KHz and Zin $>20 \mathrm{~K} \Omega$, use industry standard common components (listed on the website)

30pts

Passive Filter

$$
f_{C}=\frac{1}{2 \pi R C}
$$

$$
A=1
$$

$$
R>20 \mathrm{~K} \Omega \rightarrow 24 \mathrm{~K} \Omega
$$

$$
A_{v}=\frac{A}{\sqrt{1+\left(\frac{f}{f_{C}}\right)^{2}}}
$$

$$
\rightarrow \mathrm{C}=221 \mathrm{pF}
$$

$$
\rightarrow 220 \mathrm{pF}
$$

$$
\begin{aligned}
& f_{C}=\frac{1}{2 \pi R_{F} C} \\
& A=-\frac{R_{F}}{R_{I}} \\
& A_{v}=\frac{A}{\sqrt{1+\left(\frac{f}{f_{C}}\right)^{2}}}
\end{aligned}
$$

INVERTING

$\mathrm{A}=1$
$R_{F}=R_{1}>20 \mathrm{~K} \Omega \rightarrow 24 \mathrm{~K} \Omega$
$\rightarrow \mathrm{C}=221 \mathrm{pF}$
$\rightarrow 220 \mathrm{pF}$

ELE 4142
HW2
Name

4 - Provide the LSB size for each of the following:

10bit ADC with $\mathrm{Vref}=2.5 \mathrm{~V}$
$2.5 \mathrm{~V} / 2^{10}$ steps $=2.5 \mathrm{~V} / 1024$ steps $=2.441 \mathrm{mV} /$ step
$2.5 \mathrm{~V} /\left(2^{10}-1\right)$ steps $=2.5 \mathrm{~V} / 1023$ steps $=2.444 \mathrm{mV} /$ step
$3.3 \mathrm{~V} / 2^{12}$ steps $=3.3 \mathrm{~V} / 4096$ steps $=805.7 \mathrm{uV} /$ step
12bit DAC with Vdd $=3.3 \mathrm{~V}$

Provide the expected output value (hex) for the 10bit ADC above with Vin $=1.8 \mathrm{~V}$

$$
\begin{aligned}
& 1.8 \mathrm{~V} / 2.441 \mathrm{mV} / \text { step }=737.40 \text { steps } \rightarrow 737 \text { steps }=1011100001=0 \times 2 \mathrm{E} 1 \\
& 1.8 \mathrm{~V} / 2.444 \mathrm{mV} / \mathrm{step}=736.49 \text { steps } \rightarrow 736 \text { steps }=1011100000=0 \times 2 \mathrm{E} 0
\end{aligned}
$$

Provide the expected output value (V) for the 12bit DAC above with the input set to $0 \times 7 \mathrm{~A} 3$

$$
\begin{aligned}
& 0 \times 7 A 3=011110100011=1955 \text { steps } \rightarrow 1955 \text { steps } * 805.7 \mathrm{uV} / \text { step }=1.575 \mathrm{~V} \\
& 0 \times 7 \mathrm{~A} 3=011110100011=1955 \text { steps } \rightarrow 1955 \text { steps } * 805.8 \mathrm{uV} / \text { step }=1.575 \mathrm{~V}
\end{aligned}
$$

Briefly describe what Quantization Error is:
e.g for the 10 bit ADC, any input value within $a+/-L S B / 2$ gives the same output
so the best we can measure a value is the +/- LSB/2, this is the quantization error

