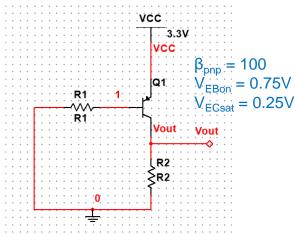

ELE 4142

1 – Sketch out the transfer characteristic of this circuit Vout vs Vin for Vin ranging
from 0V to 5V. Assume $V_{Don} = 0.7V$. Be sure to identify notable voltages and
slopes.20pts

HW2


Name_

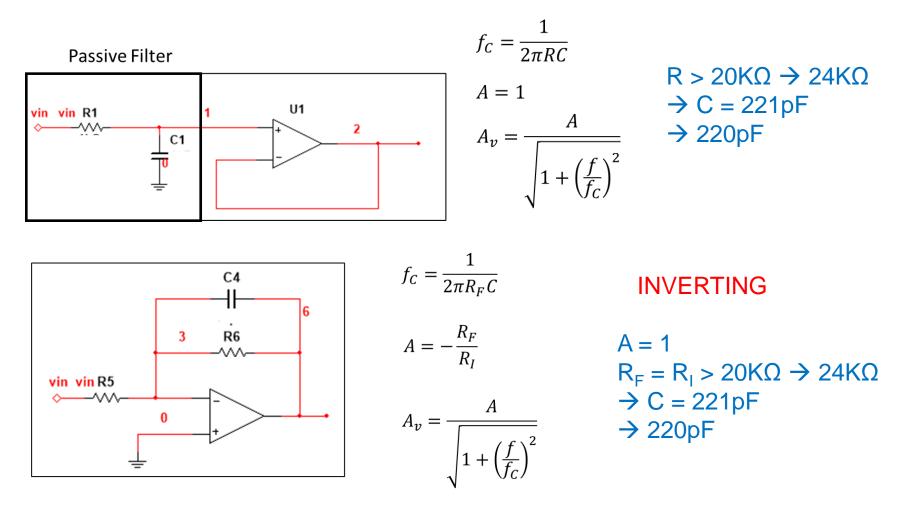
ELE 4142

Name_

2 – Select values for R1 and R2 in the circuit below. The output voltage should be 1.6V with a < 10% error to loads greater than $15K\Omega$ 20pts

10% error forces R2 || Rload to be between 0.9R2 and 1.1R2 With Rload >= 15K Ω , R2 must be < .111Rload = 1.66K Ω

Choose 1KΩ


$$\begin{split} I_{C} &= 1.6 \text{V} / 1 \text{K} \Omega = 1.6 \text{mA} \\ I_{B} &= 16 \text{uA} \\ V_{R1} &= 3.3 \text{V} - 0.75 \text{V} = 2.55 \text{V} \\ \text{R1} &= V_{R1} / I_{B} = 159,375 \Omega \end{split}$$

ELE 4142

 $\begin{array}{l} 3-\text{Design a first order active low pass filter with a cutoff frequency of 30KHz and} \\ \text{Zin} > 20 \text{K}\Omega \text{, use industry standard common components (listed on the} \\ \text{website)} \\ \end{array}$

HW2

Name

ELE 4142	HW2	Name	
4 – Provide the LSB size for each	n of the following:		30pts
10bit ADC with Vref = 2.5V	$2.5V / 2^{10}$ steps = 2.5V/1024 steps = 2.441mV/step 2.5V / (2 ¹⁰ - 1)steps = 2.5V/1023 steps = 2.444mV/step 3.3V / 2 ¹² steps = 3.3V/4096 steps = 805.7uV/step		
12bit DAC with Vdd = $3.3V$		s = 3.3V/4095 steps =	· · · · · · · · · · · · · · · · · · ·

Provide the expected output value (hex) for the 10bit ADC above with Vin = 1.8V

1.8V / 2.441mV/step = 737.40 steps → 737 steps = 10 1110 0001 = 0x2E1 1.8V / 2.444mV/step = 736.49 steps → 736 steps = 10 1110 0000 = 0x2E0

Provide the expected output value (V) for the 12bit DAC above with the input set to 0x7A3

0x7A3 = 0111 1010 0011 = 1955 steps → 1955 steps * 805.7uV/step = 1.575V 0x7A3 = 0111 1010 0011 = 1955 steps → 1955 steps * 805.8uV/step = 1.575V

Briefly describe what Quantization Error is:

e.g for the 10 bit ADC, any input value within a +/- LSB/2 gives the same output so the best we can measure a value is the +/- LSB/2, this is the quantization error