1) Identify the properties for each memory type

R/W Static/Dynamic Storage Element Relative Density $1=$ high, $5=$ low

| ROMSRAM |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| SDRAM |  |  |  |  |
| NAND Flash |  |  |  |  |
| NOR Flash |  |  |  |  |

2) Using the DDR3 DRAM from the class/notes, provide the latency from Activate to data out in clock cycles and ns assuming 933 MHz operation and CL=12 -

10 pts

How long does it take to completely output an 8 beat burst -

ELE 4142
3) Briefly explain

HW4
Name $\qquad$
a) Why is the signal swing on a DRAM bitline so small
b) How is a DRAM cell refreshed (at the bit/cell level)
4) Calculate the approximate time it would take a 50fF dram capacitor to discharge to $80 \%$ of it's programmed value ( 0.9 v ) assuming leakage of $40 \times 10^{-15} \mathrm{~A} /$ cell -

Assuming a 256 Mb array and only 1 bit is refreshed each cycle, how fast would the refresh clock need to run to prevent the programmed value to not drop below 80\% -

How many bits would need to be refreshed to keep the refresh clock under 50 KHz -
5) Memory Architecture 15 pts
a) How many bits are stored in each memory below

16Mb, x4
32 Mbx 16
b) Assuming a 4Gb, $x 4$ memory with 4 banks, a RAS/CAS addressing structure, and a square array

How many total address pins does this memory need

ELE 4142
6) Search and Think

Intel hypes its "OPTANE" memory, provide a short description of how this memory stores its bits and how they are accessed (read/write)

