ELE 4142	HW4	Name

1) Identify the properties for each memory type 10 pts

R/W Static/Dynamic Storage Element Relative Density 1= high, 5=low

ROM	R	Static	MOSFET	2
SRAM	R/W	Static	Latch	5
SDRAM	R/W	Dynamic	Capacitor	4
NAND Flash	R/W	Static	Floating Gate	1
NOR Flash	R/W	Static	Floating Gate	3

ELE 4142

Name____

2) Using the DDR3 DRAM from the class/notes, provide the latency from Activate to data out in clock cycles and ns assuming 933MHz operation and CL=12 - 10 pts

TRCD + CL TRCD = 12 clock cycle ACTIVATE to internal READ or WRITE delay CL: Read to DQ – 12 clock cycles

Activate to data out = 24 clock cycles

1 clock cycle = 1.071ns 24 clock cycles = 25.7ns

How long does it take to completely output an 8 beat burst - 10 pts

Unrelated to read clock cycles – only dependent on clock freq/2 (ddr) 1/1866MHz x 8 = 4.29ns

Or 4.29ns + 25.7ns = 29.99ns

HW4

Name_

3) Briefly explain

20 pts

a) Why is the signal swing on a DRAM bitline so small

The small charge stored on the bit capacitor gets spread across a larger bitline capacitance during a read \rightarrow low voltage swing Q = CV, fixed Q + $\uparrow C \rightarrow \downarrow V$

b) How is a DRAM cell refreshed (at the bit/cell level)

By reading the cell

Every time the cell is read, the circuit enhances the small voltage read to full strength – rewriting the original data back to the cell

ELE 4142

4) Calculate the approximate time it would take a 50fF dram capacitor to discharge to 80% of it's programmed value (0.9v) assuming leakage of 40x10⁻¹⁵A/cell - 5 pts

1	=	C dv/dt
dt	=	C dv / I
	=	50fF x 0.18v / 40x10 ⁻¹⁵ A/cell = 225ms

Assuming a 256Mb array and only 1 bit is refreshed each cycle, how fast would the refresh clock need to run to prevent the programmed value to not drop below 80% - 5 pts

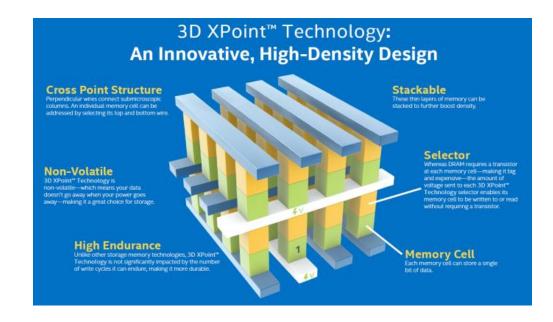
225ms/(2²⁸)= 839ps → 1.2GHz

 F_{cycle} , = $b_{total}/(n_{cycle} * t_{decay})$ = $2^{28}/(1 * 225ms)$ = 1.2GHz

How many bits would need to be refreshed to keep the refresh clock under 50KHz - 5 pts

 $n=b/(t * F) = 2^{28}/(225ms * 50KHz) = 23.860$

ELE 4142		HW4	Name			
5) Memory A	15 pts					
a) How many bits are stored in each memory below						
16Mb, x4	16Mb, x4 16Mb in a by 4 configuration \rightarrow 16Mb or 16,777,216b					
32Mbx16	32Mb by 16 \rightarrow 512	2Mb or 536,870	,912b			
b) Assum _{4b} structure	m 4Gb total / 4 banks \rightarrow 1Gb / bank 4b / column \rightarrow 256M addressable locations For a square array/bank – 4 rows for every 4b column					
How mar \rightarrow I	nar \rightarrow Row address = 4x column addresses \rightarrow Row address bits = 2 + column address bits					
256	$5M$ location \rightarrow 28 add 13 column address b	dress bits				
15	+ 2 for the bank + R	$AS + CAS \rightarrow 19$	pins			


Name_

6) Search and Think

20 pts

Intel hypes its "OPTANE" memory, provide a short description of how this memory stores its bits and how they are accessed (read/write)

3D Cross-Point memory Phase change material sandwiched between 2 orthogonal layers Write – apply voltage to make material conducting or non-conducting Read – sense a short or open between orthogonal conductors

