ELE 4142

Name

1) You have been asked to design a VERY simple circuit to determine the direction of motion for the quadrature output of a mouse

Design Requirements:
Forward or Backward. (don't over complicate it - direction only)
Available signals:
A, B
Explore several design spaces - there is a truly simple solution

ELE 4142

2) You have been tasked with calculating the required frame rate for a new optical mouse design

30pts
Design Requirements:
Motion up to 25ips must be supported
System Specs:
20×20 sensor
Sensor resolution $=400 \mathrm{cpi}$

2.5in $\rightarrow 62.5 \mathrm{cnts}$
4×4 pixel minimum required to attain correlation
$400 \mathrm{cpi} \rightarrow$ pixel resolution of 2.5 m -inch/pixel
Max motion of 16 pixels/frame $\rightarrow 0.04 \mathrm{in}$ / frame
25ips / 0.04in/frame $=625 f p s$

400 cpi * $25 \mathrm{ips}=10,000$ counts/s
Maximum allowed motion / frame would be 16 pixels in either direction 10,000 counts/s $/ 16$ pixels/frame $=625 \mathrm{fps}$

ELE 4142

3) Assuming a Twisted Nematic Liquid Crystal - indicate the polarity of light exiting the structure: Horizontal, Vertical, None

Horizontal

\qquad
4) You have been assigned the job of sizing the Cell capacitance of a new

OLED pixel cell. This cell will be used in a 1080p display operating at a 60 Hz refresh rate.

30pts
Design Requirements:
Maintain 95% programmed brightness between refresh cycles at 75% of peak
brightness
Known Parameters:
Peak programming voltage $=8 \mathrm{~V}$
Parasitic capacitance on the source follower gate node $=5 \mathrm{fF}$
Parasitic leakage on the source follower gate node is 0.5 pA
Design Understanding:
Brightness is proportional to diode current
Diode current is proportional to the gate voltage of the source follower
Peak brightness ~ current
Current ~ gate voltage
100% peak brightness $\leftarrow 100 \%$ programmed voltage
75% peak brightness $\leftarrow 75 \%$ programmed voltage $=6 \mathrm{~V}$
$95 \% \rightarrow 5 \%$ drop $\rightarrow 300 \mathrm{mV}$
$\mathrm{i}=\mathrm{Cdv} / \mathrm{dt}$
$C=i d t / d v$

$\mathrm{i}=0.5 \mathrm{pA}, \mathrm{dv}=300 \mathrm{mV}$, $\mathrm{dt}=(1 / 60)=16.66 \mathrm{~ms} \rightarrow$ Ctotal $=27.8 \mathrm{fF}$
Ccell $=22.7 \mathrm{fF}$

ELE 4142

5a) Determine the difference in time for a specific individual pixel to update comparing a 1080 p display operating at 120 Hz and a 1080 i display operating at 120 Hz

No difference - progressive or interlaced does not matter, only the refresh rate

5b) What is the fundamental physical principle behind Eink operation

