
Last updated 1/18/24

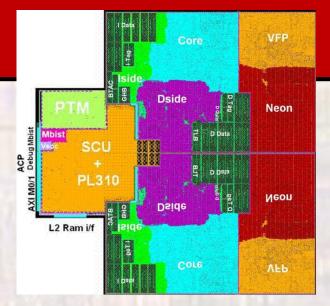
- Processor Cost Overview
 - Key Components building to part cost
 - Wafer Cost
 - 300mm wafers range from \$5000/wafer (early) down to \$1200/wafer (mature)
 - Cost reductions associated with process maturity
 - Wafer Yield = number of wafers that make it through the process with working transistors
 - Die Cost
 - Based on the number of full die that can fit on a wafer
 - Good Die Cost
 - Based on the number of die that are fully functional (may include redundancy)
 - Packaged Part Cost
 - Add the cost of package and packaging process
 - Good Packaged Part Cost
 - Based on the number of fully functional packaged parts (may include redundancy)
 - Margin
 - Additional \$ to cover R&D, facilities, ... AND profit

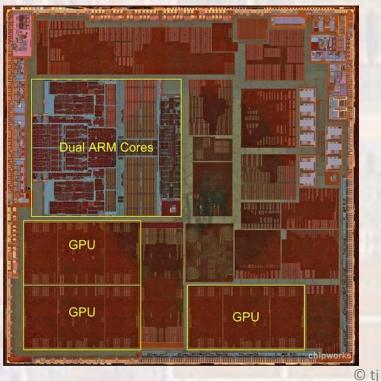
Processor Cost Overview

- Wafer Cost
 - 45nm, 300mm wafers ~ \$2000/wafer
 - Typical "lot" of 25 wafers
 - Typical wafer yield of 95%
 - Losses are a combination of single wafers and whole lots
- Die Cost
 - # of full die that will fit on a wafer
 - Various approaches to maximize die cour
 - Die Cost = Wafer Cost / # of Die

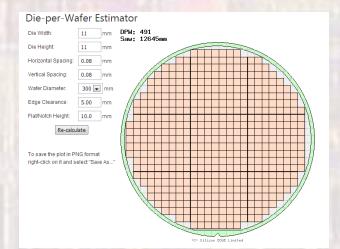
ELE 4142 3

Processor Cost Overview




- Processor Cost Overview
 - Good Die Cost
 - Based on the number of die that are fully functional
 - 2 primary yield components
 - Parametric Yield
 - Process Yield
 - Parametric Yield
 - Parts that fail to meet a performance measure
 - Typically max frequency or current drain
 - Can be mitigated by binning (have a fast version of the part and a slow version)
 - Typically 95% on digital parts
 - Process Yield
 - Dominated by defects in the manufacturing process
 - $Y = Y_o(1 + \frac{D_0 A}{\alpha})^{-\alpha}$ NB negative binomial model
 - Y₀ portion of area subject to defects (0.8-0.95)
 - D₀ defect density (100defects/cm² (early) 0.15defects/cm² (mature))
 - A die area (20mm² 400mm²)
 - α cluster factor (10 20)

Processor Cost Overview


- Packaged Part Cost
 - Add the cost of package and packaging process
 - \$0.20 for small simple packages
 - \$2 \$4 for complex BGAs
 - \$1 for POP
- Good Packaged Part Cost
 - Based on the number of fully functional packaged parts
 - Package yield is typically 95% 99+%
- Margin
 - Additional \$ to cover R&D, facilities, ... AND profit
 - 20% for mature products
 - 50% for new products

- Processor Cost Example
 - Arm Cortex A9
 - 32kB I/D Cache
 - 26M transistors
 - 500mW @ 2GHz
 - 5mm² in 45nm process technology
 - Apple A5
 - Dual Arm Cortex A9s
 - 45nm Samsung Process
 - Die size = 122mm²
 - 1300 pin POP BGA
 - Samsung 45nm process
 - 300mm wafers
 - $D_0 = 0.25 \text{ defects / cm}^2$
 - $\alpha = 10$
 - $Y_0A5 = 0.95$

- Processor Cost Example
 - Wafer Cost
 - 300mm, 45nm → \$2000 / wafer
 - Wafer yield 95% → \$2105 / wafer
 - Die Cost
 - 122mm2 → 491 die/wafer → \$4.29 / die

- Good Die Cost
 - $Y = Y_o (1 + \frac{D_0 A}{\alpha})^{-\alpha} = 0.95 (1 + \frac{(0.25 \text{ defects/cm}^2)(122 \text{mm2} \times (\frac{1 \text{cm}}{10 \text{mm}})^2)^{-10}}{10} = 0.703$
 - Defect driven die cost = \$4.29/die / 0.703 = \$6.10 / die
 - Parametric yield $-0.98 \rightarrow 6.22 / die
- Packaged Part Cost
 - 1300 pin POP-BGA = $\$3 \rightarrow 9.22$ / part

- Processor Cost Example
 - Good Packaged Part Cost
 - 98% yield → 9.41 / part
 - Margin
 - If this was not an Apple design
 - Margin = 50% → Part cost = \$18.82
 - Apple can cover the margin costs at the final product level
 - → Part Cost = \$9.41
 - Gut feel cost before margin = \$6.50