Last updated 2/1/24

Memory Taxonomy

Cost/Density Comparison

- Critical Memory Considerations
 - Most dense, cheapest / bit → slowest
 - Least dense, most expensive / bit \rightarrow fastest
 - Can't have everything in a single solution

→ Memory Hierarchy

- Issue with a hierarchy
 - Must transfer data up and down the hierarchy
 - Some accesses as slow as the slowest level addressed

- Memory Hierarchy Considerations
 - Two aspects of processor applications make a memory hierarchy workable
 - Temporal Locality
 - You are more likely to uses something you recently used
 - Loops, calculated values, ...
 - Spatial Locality
 - You are likely to use something that is close to something you recently used
 - Linear code, small loops, data structures

- Memory Hierarchy Considerations
 - Transitions are limited between adjacent levels in the hierarchy
 - Transfer units of information
 - Line or Block
 - Different for each level
 - If what we want is in the memory we are looking at → HIT
 - If what we want is not in the memory we are looking at → MISS

Data is transferred

- Memory Hierarchy Considerations
 - Typical System

Registers (Flip-Flops)

Cache (SRAM)

Main Memory (DRAM)

Storage (HDD or Flash)

- Advanced systems may have 2,3,4 levels of cache
 - Each is progressively slower and larger
 - Size is targeted at holding entire applications

- Exponential shorthand
 - Use of K, M, G, T is situationally dependent
 - In science and math:
 - $K = x10^3$
 - M = x10⁶
 - G = x10⁹
 - $T = x10^{12}$
 - In computer and digital systems:
 - K = x2¹⁰ = x1,024 Kilo
 - M = x2²⁰ = x1,048,576 Mega
 - G = x2³⁰ = x1,073,741,824 Giga
 - T = x2⁴⁰ = x1,099,511,627,776 Tera

© tj

- Quick binary size calculation method
 - Multiplying exponential numbers (with the same base) → adding the exponents

 $2^{12} = 2^2 2^{10} = 4 \text{ K}$

Requires 12 bits

 $2^{16} = 2^6 2^{10} = 64 \text{ K}$

Requires 16 bits

 $2^{23} = 2^3 2^{20} = 8 M$

Requires 23 bits

 $2^{35} = 2^5 2^{30} = 32$ G Requires 35 bits $16K = 2^4 2^{10} = 2^{14}$

Requires 14 bits

 $2K = 2^1 2^{10} = 2^{11}$

Requires 11 bits

 $1M = 2^0 2^{20} = 2^{20}$

Requires 20 bits

 $128G = 2^7 2^{30} = 2^{37}_{Re}$

Requires 37 bits