Last updated 2/4/24

- Direct implementation of the Logical view
 - Array of single bit cells (8 bits wide)
 - Row decoder chooses 1 row
 ADDRESS
 - Rows are typically called wordlines
 - Bit Cell Columns are typically called bitlines
 - Non optimal
 - Physical implementation
 - Non-practical die dimensions
 - Speed
 - Long lines → slow speeds

8 bit output

1KB 1024 rows x 8 cols

- Practical Physical Structure
 - Array of single bit cells
 - Typically, square <-> 1::2 ratio
 - Grouped as N bit columns
 - N = 1,4,8,16,32,64,128,... bits/column
 - Row decoder chooses 1 row
 - Column decoder chooses 1 column

- Practical Physical Structure
 - 1Mb array, with square bit cells, in a x1 (col = 1bit) architecture
 - 1K rows X 1K columns
 - 10 row address lines, 10 col address lines \rightarrow 20 total address lines

Practical Physical Structure

- 1Mb array, with square bit cells, in a x1 (col = 1bit) architecture with shared address lines
 - 1K rows X 1K columns
 - Add a Row Address Strobe (RAS) and Column Address Strobe (CAS)
 - Row decode is active when RAS high, Col decode is active when CAS high

- Memory Descriptive Terminology
 - 16Mb in a x4
 - 16Mb total memory, each memory address provides 4 bits
 - 16Mb x 4
 - 64Mb total memory, each memory address provides 4 bits
 - Could be configured as 4 16MB memories, each providing 1b to the output

- Memory Descriptive Terminology
 - Example 16Mb in a x4 configuration ^{16 rows→}
 - address sharing

16Mb total → 16,777,216 bits x4 means each column is 4 bits or each address points to 4 bits

⁴ cols \rightarrow 2 bit address

16Mb in a x4 configuration → 4 bits / address → 4,194,304 - individual addresses → 22 total address bits

Assuming a square memory array and a square bit cell \rightarrow 4 times as many rows as columns

4 times as many rows as columns \rightarrow 2 more row address bits than column address bits

22 address bits \rightarrow 12 bits for row addresses and 10 bits for column addresses

IF sharing address bits \rightarrow 12 address bits + RAS + CAS = 14 total address signals

- Memory Packaging
 - Single chip
 - DIP, SOP, BGA
 - SIMM
 - Single In-line Memory Module
 - 4Mb Module → 8, 256Kb x 1 chips
 - 32b processor would require 4 SIMMs
 - DIMM
 - Dual In-line Memory Module
 - 2 sided version of a SIMM, thicker but shorter
 - DDRx
 - Double Data rate (SDRAM)
 - DIMM with registration slots tied to DDRx type

