MOS Circuits

Last updated 1/11/24

Gain Stage

- Determine Vout for various values of Vin

$$
\begin{aligned}
& \mathrm{k}^{\prime}=5 \mathrm{~mA} / \mathrm{V}^{2} \\
& \mathrm{~V}_{\mathrm{t}}=1 \mathrm{~V} \\
& \mathrm{~W} / \mathrm{L}=10 \\
& \mathrm{Vdd}=3 \mathrm{~V} \\
& \mathrm{R}=100 \Omega
\end{aligned}
$$

Current Source

- Determine the value of I

$$
\begin{aligned}
& \mathrm{Vdd}=3.3 \mathrm{~V} \\
& \mathrm{k}^{\prime}=5 \mathrm{~mA} / \mathrm{V}^{2} \\
& \mathrm{~V}_{\mathrm{t}}=1 \mathrm{~V} \\
& \mathrm{M} 1: \mathrm{W} / \mathrm{L}=10 \\
& \mathrm{M} 2: \mathrm{W} / \mathrm{L}=10 \\
& \mathrm{M} 3: \mathrm{W} / \mathrm{L}=20
\end{aligned}
$$

- Provide the value for $\mathrm{W}_{\mathrm{M} 2}$ to make a symmetric switching point

$$
\begin{aligned}
& V d d=3.3 \mathrm{~V} \\
& V_{t n}=V_{t p}=1 \mathrm{~V} \\
& \mathrm{k}^{\prime} \mathrm{n}=3 \mathrm{~mA} / \mathrm{V}^{2} \\
& \mathrm{k}^{\prime} p=1 \mathrm{~mA} / \mathrm{V}^{2} \\
& \mathrm{M} 1: \mathrm{W}=10 \mathrm{~nm} \\
& \mathrm{M} 1: \mathrm{L}=5 \mathrm{~nm} \\
& \mathrm{M} 2: \mathrm{L}=5 \mathrm{~nm}
\end{aligned}
$$

Compound Logic Gate

- Provide a minimized logic equation for the following CMOS gate

Mystery Circuit

- What is the purpose of this logic gate

