MOS Transistors

Last updated 1/11/24

Structure

- N-MOS Operation
 - Large Positive Bias
 - Depletion region is formed
 - Mobile holes pushed away (region is depleted of holes)
 - Net negative (fixed) charge left behind
 - Electrons are drawn from the Si to form an inversion layer

A channel is formed from Source to Drain Electrons can flow through this channel

- N-MOS Operation
 - Large Positive Bias + Positive Bias from Drain to Source
 - Electrons move from Source to Drain
 - Current flows from Drain to Source

P-MOS Operation

- Large Negative Bias
 - Depletion region is formed
 - Mobile electrons pushed away (region is depleted of electrons)
 - Net positive (fixed) charge left behind

A channel is formed from Source to Drain Holes can flow through this channel

- P-MOS Operation
 - Large Negative Bias + Positive Bias from Source to Drain
 - Holes move from Source to Drain
 - Current flows from Source to Drain

Parameters

- W width of the transistor
- L length of the transistor (S to D)
- V_{th} threshold voltage (inversion layer formed)
- Kn, Kp conduction parameter

$$K_n = \frac{W\mu_n C_{ox}}{2L} \qquad K_p = \frac{W\mu_p C_{ox}}{2L}$$

$$K_n = \frac{k'_n}{2} \frac{W}{L}$$

$$K_p = \frac{k'_p}{2} \frac{W}{L}$$

$$k'_n = \mu_n C_{ox}$$

$$k'_p = \mu_p C_{ox}$$

 μ_n , μ_n , C_{ox} fixed for a given semiconductor process

Parasitic Elements

- Gate
 - Capacitive
 - No DC current
 - AC/Transient current
- S/D
 - Channel Resistive
 - Dependent on V_{GS} and V_{DS}
 - Capacitive to Gnd (V_{DD})
 - No DC current
 - AC/Transient current
 - Reverse Biased Diode to Gnd (V_{DD})
 - Small leakage current independent of transistor action

- Enhancement Mode
 - A bias is required to form the channel
 - 4-terminal symbol

- In digital applications the Source is typically tied to
 - Vdd for P-MOS
 - Gnd for N-MOS

The simplified logic symbols

Note – almost all N-MOS and P-MOS devices used today are enhancement mode – so the dashed line is omitted

- $V_{GS} > V_{th}$, $V_{DS} < V_{DSsat}$
 - Inversion region is formed
 - Electrons can flow from source to drain
 - Current can flow from drain to source
 - Greater $V_{GS} \rightarrow$ deeper channel \rightarrow more current

$$V_{DSsat} = V_{GS} - V_{th}$$

$$I_D = K_n[2(V_{GS} - V_{tn})V_{DS} - V_{DS}^2]$$

increasing V_{GS}

- $V_{GS} > V_{th}$, $V_{DS} > V_{DSsat}$
 - Inversion region is formed
 - V_D is high enough to counteract the V_G near the drain → "pinch-off" of the channel
 - No additional current flow is allowed

 V_{DSsat}

increasing V_{GS}

 I_D

$$V_{DSsat} = V_{GS} - V_{th} \qquad I_D = K_n (V_{GS} - V_{tn})^2$$

$$I_D = K_n (V_{GS} - V_{tn})^2$$

- P-MOS Operation Linear
 - $V_{SG} > V_{th}$, $V_{SD} < V_{SDsat}$
 - Inversion region is formed
 - Holes can flow from source to drain
 - Current can flow from source to drain
 - Greater $V_{SG} \rightarrow$ deeper channel \rightarrow more current

$$V_{SDsat} = V_{SG} - V_{th}$$

$$I_D = K_p [2(V_{SG} - V_{tp})V_{SD} - V_{SD}^2]$$

increasing V_{sc}

- $V_{SG} > V_{th}$, $V_{SD} > V_{SDsat}$
 - Inversion region is formed
 - V_D is low enough to counteract the V_G near the drain → "pinch-off" of the channel
 - No additional current flow is allowed

 V_{SDsat}

increasing V_{sG}

 I_D

$$V_{SDsat} = V_{SG} - V_{th}$$
 $I_D = K_p (V_{SG} - V_{tp})^2$

• Parameters
$$K_n = \frac{W\mu_n C_{ox}}{2L}$$

$$K_p = \frac{W\mu_p C_{ox}}{2L}$$

$$K_n = \frac{k_n'}{2} \frac{W}{L}$$

$$k'_n = \mu_n C_{ox}$$

$$K_p = \frac{k_p'}{2} \frac{W}{L}$$

$$k_p' = \mu_p C_{ox}$$

 μ_n , μ_n , C_{ox} fixed for a given semiconductor process \rightarrow

k'_n, k'_p fixed for a given semiconductor process

$$I_D = K_n[2(V_{GS} - V_{tn})V_{DS} - V_{DS}^2]$$

$$I_D = \frac{k'_n}{2} \frac{W}{L} [2(V_{GS} - V_{tn})V_{DS} - V_{DS}^2]$$

$$I_D = K_p [2(V_{SG} - V_{tp})V_{SD} - V_{SD}^2]$$

$$I_D = \frac{k'_p}{2} \frac{W}{L} \left[2(V_{SG} - V_{tp}) V_{SD} - V_{SD}^2 \right]$$

Saturation

$$I_{D} = K_{n}(V_{GS} - V_{tn})^{2}$$

$$I_{D} = \frac{k'_{n}}{2} \frac{W}{L} (V_{GS} - V_{tn})^{2}$$

 $V_{DS} > V_{DSsat}$ $V_{DSsat} = V_{GS} - V_{th}$

$$V_{SDsat} = V_{SG} - V_{th} \qquad V_{SD} > V_{SDsat}$$

$$I_D = K_p (V_{SG} - V_{tp})^2$$

$$I_D = \frac{k'_p}{2} \frac{W}{I} (V_{SG} - V_{tp})^2$$

MOS Gate Capacitance

Parameters

- W Transistor Width
- L Transistor length (channel length)
- t_{ox} thickness of the oxide
 - 15-20 Angstroms 3 to 4 atom layers
 - 1.5 2.0x10⁻⁹ m
- ε₀ permittivity (dielectric constant) of free space
 - 8.85x10⁻¹²F/m
- ε_r(SiO₂) relative permittivity multiplier for SiO₂
 - 3.9

$$C_G = W \times L \times C_{ox} = W \times L \times \epsilon_{ox} / t_{ox} = W \times L \times \epsilon_0 \epsilon_r / t_{ox}$$

$$C_{Gn} = W \times L \times {\mathbf{k'}_n}/{\mu_n}$$

$$C_{Gp} = W \times L \times {^{\mathbf{k'}p}}/{\mu_p}$$