Last modified 4/4/24

* Memory Hierarchy Considerations

e Typical System

CPU

Registers 1
Increasing distance
CaChe (SRAM) AN from the CPU in
: access time
mel;'::re;shlir;rt:::hy / Level 2 \

Main Memory (DRAM) / 5

i N

Storage (HDD’ SSD Or FlaSh) Size of the memory at each level

* Advanced systems may have 2,3,4 levels of cache
* Each is progressively slower and larger
* Size is targeted at holding entire applications

ELE 4142 2 © tj

ELE 4142

e Cache Overview

* Closest memory to the CPU

* SRAM

* Fast
* Not too large (KB - MB)

 Must MAP a larger address space into a small memory
* Direct Mapped
* Set Associative

© tj

e Direct Mapped Cache

* Every higher level memory location is mapped to a single
cache memory location

O
QD
o
5
®

000
001
010
011
100
101
110
111

-
»r

}

¢ J/ \\ e
00001 00101 01001 01101 10001 10101 11001 11101
Memory

ELE 4142 4 © tj

* Direct Mapped Cache

cccccccc
OOOOOOOO
rrrrrrrr

e Cache size is built to be a power of 2 A

e Cache block = Y
(Block Address) mod (# of cache blocks) |. / \ g

00001 00101 01001 01101 10001 10101 11001 11101

 Eg. Assume a 256 block cache s
Where does the memory block from address 0x2A3F map to?

Ox2A3F mod 256,,= 0x3F = 63,

* As long as we follow this convention (cache size = 2")

e Cache block address = last n bits of the memory address*

* for 1 byte block sizes

ELE 4142 5 © tj

ELE 4142

e Direct Mapped Cache
* 8 block cache, 1byte/block, 16 bit address space

15 14 ..

1

0

OR R 3l 154110 Bl 16 bit address

.
Tag

8 Block Cache
Index Valid Tag Data (1 byte)
0
1
2
3
4
.ﬁ 5
6
7

© tj

e Direct Mapped Cache
* 8 block cache — Write

* Could be Store from the processor or load from next level memory

15 14 ..

1 O

Tag

16 bit address Data Bus
//8
8 Block Cache
Tag Data (1 byte)
10884, 04 L0 Data A <S5

e Direct Mapped Cache
e 8 block cache — Read

* Could be a Load from the processor or a request from a lower level

memory
15 14 .. Ap—3 FNNI4.0
1 0 a- b o 16 bit address Data Bus

Tag Index \ X3

8 Block Cache
Index Valid Tag Data (1 byte)
0
1
2 1 OFE .Y (0L Data C
3 11 10 .. 11 Data B
i 4

Hit _(_® g 1 100L 04 Data A T
{7 :
rernaalo Data E

ELE 4142 8 © tj

ELE 4142

e Direct Mapped Cache

* Replacement

 What happens if | request a memory location with the same index
as a valid block but at a different Tag location

* Add a “dirty” bit to indicate the current block has been modified
from when it was originally loaded

 If the dirty bit is NOT set — simply overwrite the old block with the
new data and tag

* The old data still exists at the higher level

 If the dirty bit IS set — write the current data to the next higher level
memory — then overwrite the block with the new data and tag

Ot

e Direct Mapped Cache

e 1K block cache, 1 word block, 32 bit data word, 32 bit address space

31 .. 13 12 11 21|46
32 bit address Data Bus
Byte A
. j/
Tag 120 Index 10 Offset //32
1K Block Cache
Index Valid Tag Data (4 bytes) D
0
1
2
Hit 3

ELE 4142 10 © tj

* Performance

* Assuming a pipelined structure and 1 clock cycle access to
level 1 data and instruction caches

* Execute 1 instruction / clock cycle

* CPI—clocks per instruction =1

ELE 4142 11 © tj

ELE 4142

e Cache Read Miss - Program Memory

* On a miss we do not have the requested program memory
value available (current instruction)

* In the mean time the PC has incremented (+4 for MIPS)

* We must stall the processor while we wait for the
instruction

12

© tj

e Cache Read Miss - Program Memory

* Actually have 2 control circuits (controllers)
* Processor controller

 Memory controller
* Separate due to timing and latencies associated with the memory

* Processor control will stall the processor
* Wait for a signal to restart

* Memory controller

* Sends the original program memory address to memory with a
read request (current PC - 4)

 When available: write data, tag, and valid bit in cache
» Signal the processor to restart at the fetch stage

ELE 4142 13 © tj

e Cache Read Miss — Data Memory

* On a miss we do not have the requested data memory
value available (cannot complete the instruction - Load)

* We must stall the processor while we wait for the data

ELE 4142 14 © tj

* Cache Read Miss - Data Memory

e Actually have 2 control circuits (controllers)
* Processor controller

* Memory controller
* Separate due to timing and latencies associated with the memory

* Processor Control will stall the processor
* Wait for a signal to restart

 Memory controller

e Sends the original data memory address to memory with a read
request

 When available: write data, tag, and valid bit in cache
 Signal the Processor to restart with the memory read

ELE 4142 15 © tj

ELE 4142

* Memory Consistency

 Our memory hierarchy needs to
remain consistent

e All levels must contain the same value
for a given memory location

* If not —which is right?

* Not a problem for reads
e Can be a problem for writes

16

Levels in the
memory hierarchy

CPU

|

Increasing distance
Level 1 from the CPU in

access time
/ Level 2 \

/

Level n \

Size of the memory at each level

© tj

ELE 4142

* Write-through

e Simple approach to ensure memory consistency
* Every write to the cache = write to main memory

* Write Miss
 The desired memory value is not in the cache

Read the desired memory value from main memory
Write it into the cache

Modify it (since this was started with a write instruction to begin
with)
Write a copy back to main memory

17

© tj

ELE 4142

* Write-through

Simple approach — but very inefficient

Every write to the cache = write to main memory
Main memory writes are very slow (why we have a hierarchy)

Example
* Main memory clock cycles/write = 100
* 1% of instructions are stores

1% of instructions will take 100 clock cycles

New CPl =1 + 1 = 2 clocks/instruction
All that work to reduce the CPI has been foiled!

18

© tj

ELE 4142

e Write-Back

e Alternative to write-through

* Only write back to main memory when the cache block is
being replaced

* And only when it is “dirty”, i.e. been changed

* Provides a similar performance advantage as the cache
read process

* 10% of instructions are writes but only 10% are cache misses,
leading to a write-back rate of 1%

19

© tj

* Write-back vs. Write-through

. erte through
Can write to the cache and determine if there is a miss at the same
time
* If hit — write is OK

* |f miss —no harm since the value over-written has already been stored in
memory

* Process moves forward as usual — but only replacing the parts of the block
that were not just overwritten

e All writes can occur in 1 clock cycle

* Write-back
* Must write the block back to memory on a miss (and dirty)

* 2 clock cycles: one to determine hit or miss, one to initiate write back on
misses

* Or use a write buffer to pipeline the process = 1 clock cycle
* Or use a store buffer to hold the stored value while the write-back occurs
then updates the cache on the next available cache write cycle

ELE 4142 20 © tj

* Split vs. Single Cache

 Single cache to supportland D

* Larger (same as 2 together) = better hit rate

* Allows more flexibility for how much is data and how much is

instruction
e consider a small program operating on a lot of data vs. a big program using
almost no data

Split Cache = Combined Cache

Cache Size . .
Miss Rate Miss Rate

32KB 3.24% 3.18%

e Split I and D cache
* Allows for concurrent | and D access — 2x bandwidth
* Far outweighs the flexibility advantage of a combined cache

ELE 4142 21 © tj

ELE 4142

* CPU performance

* CPU Time
* Clock Cycle Time x (CPU execution cycles + CPU stall cycles)

e CPU Stall Cycles

* Hazard stall cycles + Read stall cycles + Write stall cycles
 |let Hazard stall cycles go to zero with various techniques

e CPU stall cycles = Memory stall cycles = Read stall cycles + Write
stall cycles

22

© tj

* CPU performance - example

CI:)Iideal i

2% instruction miss rate

4% data miss rate

100 cycle miss penalty

36% of instructions are Loads or Stores

Instruction Miss Cycles = lcount x 2%miss/inst x 100cycles/miss
=2 X lcount

Data Miss Cycles = Icount x 36%LS/inst x 4%miss/LS x

100cycles/miss
= 1.44 x Icount

ELE 4142 23 © tj

* CPU performance — example cont’d

Memory Stall Cycles = 2 Icount + 1.44 Icount = 3.44 Icount
This is almost 3.5 stalls per instruction !!!

CPI = CPI. .., + 3.44 clocks/inst = 5.44 clocks/inst

idea

Only achieving 37% of the ideal performance

ELE 4142 24 © tj

ELE 4142

* CPU performance — example cont’d

If we improve the processor to a CPl,.., = 1 (better
pipeline)

CPl = CPl.,_., + 3.44 clocks/inst = 4.44 clocks/inst
This improves the performance — but not linearly

Only achieving 22.5% of the ideal performance

25

© tj

e Direct Mapped Cache
* Maps each memory location into a single cache location

QOO0 — 0O
Block sSgzzS3::

00001 00101 01001 01101 10001 10101 11001 11101
Memory

ELE 4142 26 © tj

* Fully Associative Cache

* Maps each memory location to any cache block

Block 8822883 +¢
Cache
SN NSEN
NN NUR
SRR
SRR
Memory
00001 00101 01001 01101 10001 10101 11001 11101

ELE 4142 27 © tj

* Fully Associative Cache

* Maps each memory location to any cache block

* Reduces the number of mapping conflicts
* Reduces the number of Misses

but

* Very inefficient
* Increases total number of bits

* Must search each tag field
* Increases the amount of compare logic

ELE 4142 28 © tj

* Fully Associative Cache
e 1K block cache, 32 bit word

32 31 .. 13 12 11 o0 1| e
32 bit address Data Bus
»z Byte 7}
1 30 Offset
Tag 132
1K Block Cache
Index Valid Tag Data (4 bytes)
0
1
2
< A

ELE 4142 29 © tj

e Set Associative Cache

* Maps each memory location to a limited number of blocks

Set 00" o118 .kl

i |

Cache

Memory

00010 00100 01010 01100 10010 10100 11010 11100

ELE 4142 30 © tj

e Set Associative Cache

* M block, N-way Set Associative Cache

* N-way = each set consists of N blocks

* M block = total number of blocks is M

* 64 block, 2-way set associative cache

e 32 sets of 2 blocks
 Each memory location can be mapped to 2 blocks
* There are 32 mapping groups

ELE 4142 31 © tj

ELE 4142

e Cache Comparison

64 Block Cache

Direct Mapped
* block location = (block number) modulo (# of blocks)
e 1000 mod 64 = block 40

2-way Set Associative
» set location = (block number) modulo (# of sets)
* 1000 mod 32 =set 8

Fully Associative
* looks like a 64-way set associative cache = 1 set
e 1000 mod 1=set0

32

© tj

e Cache Comparison

° 8 B | oC k Ca C h e One-way set associative

(direct mapped)
Block Tag Data

? Two-way set associative
5 Set Tag Data Tag Data
3 0

A 1

5 2

6 3

/4

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

ELE 4142 33 © tj

ELE 4142

e Cache Comparison

* 4 Block Cache — address sequence =0,8,0,6,8

* Direct Mapped

Block Address Cache Block

0 Omod4=0
6 6mod4=2
8 8mod4=0

Address of memory Hit Contents of Cache after reference
block addressed or Miss
0 miss mem|[0]
8 miss mem|[8]
0 miss mem[0]
6 miss mem|[0] mem[6]
8 miss mem[8] mem][6]

34

5 accesses
5 misses

© tj

ELE 4142

e Cache Comparison

* 4 Block Cache — address sequence =0,8,0,6,8

* 2-way Set Associative

Block Address Cache Block

0 Omod2=0
6 6mod2=0
8 8mod2=0

Address of memory Hit Contents of Cache after reference
block addressed or Miss Set0 Set1
3 == o 5 accesses
8 miss mem[0] mem[8] 4 misses
0 hit mem[0] mem([8]
6 miss mem|[0] mem[6]*
8 miss mem[8]* mem|[6]
* least recently used block
35 © tj

e Cache Comparison

* 4 Block Cache — address sequence =0,8,0,6,8

* Fully Associative

Block Address Cache Set

0 Omod1=0
6 6mod1=0
8 8mod1=0

Address of memory Hit Contents of Cache after reference
block addressed or Miss Set0
0 miss mem|[0] 5 accesses
8 miss mem[0] mem[8] 3 misses
0 hit mem[0] mem([8]
6 miss mem|[0] mem|8] mem[6]
8 hit mem[0] mem|[8] mem][6]

ELE 4142 36 © tj

ELE 4142

e Cache Comparison

* As associativity increases:

* Hit rate goes up

 Complexity goes up
* Cost
e Usually leads to slow down

 SPEC2000 benchmarks — 64KB Cache, 16 word block

Associativity Data miss rate
1 10.3%
2 8.6%
4 8.3%
8 8.1%

37

© tj

ELE 4142

e Cache Implementation

Address
3130---12111098---3210

| [] What configuration is this cache?

J22 48
Tag
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
® [] [® [p L [p b [] p
253
254
255
J22 {32
= = = (E

4-to-1 multiplexor

Hit 33 Data

© tj

ELE 4142

e Cache Implementation

Address
3130---12111098---3210

What configuration is this cache?
256 x 4 blocks = 1K Block, 4 way
4 bytes/block = 4KByte, 4 way

!

Hit

39

J22 48
Tag
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
® [] [® [p L [p [] p
253
254
255
J22 {32
(= = (E

4-to-1 multiplexor

Data

© tj

ELE 4142

* Replacement Policies

e Set associativity introduces the need to choose which
block to replace

 Random
* Implement pseudo-random block selection with-in a set

e Least Recently Used (LRU)
* Leverages temporal locality

* First-in, first-out (FIFO)
* Replace the oldest block
e Simpler than LRU but frequently results in similar performance

40

© tj

* Replacement Policies

* Data Cache Misses
e 1000 instructions, SPEC2000, Alpha Architecture

Associativity

Two-way Four-way Eight-way
Size LRU Random FIFO LRU Random FIFO LRU Random FIFO
16 KB 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 110.4
64 KB 103.4 104.3 103.9 1024 102.3 103.1 99.7 100.5 100.3
256 KB 92.2 92.1 02.5 92.1 92.1 02.5 02.1 92.1 92.5

src. Computer Architecture, Hennessy and Patterson, 5 ed.

ELE 4142 41

© tj

* Performance Review

Data misses / 1000 instructions

Associativity

Twa—way Enur—way Eight—wa}f >
Size LRU Random FIFO LRU Random FIFO LRU Random FIFO
16 KB 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 110.4
64 KB 103.4 104.3 103.9 102.4 102.3 103.1 097 100.5 100.3
256 KB 02.2 02.1 02.5 02.1 02.1 G2.5 02.1 02.1 02.5
<€ >

src. Computer Architecture, Hennessy and Patterson, 5t ed.

LRU < FIFO < Random

diminishing

ELE 4142

Bigger cache - fewer misses

but differences small

42

Associativity reduces misses for smaller caches — but

For large caches, associativity becomes less important

© tj

* Single level Cache Issues

* Cache miss penalties are very high when a miss goes to
main memory

* Many stall cycles

* Large caches are slower
* Slowing down the processor

- Multi-level Cache

ELE 4142 43

© tj

ELE 4142

e Multi-level Cache

e 2 on chip Caches
* Smaller — L1 cache
* Larger— L2 cache

e L1
* Targeted at allowing the processor to run as fast as possible
* Focus is on hits

* Fewer ways
* smaller blocks

* L2
* Targeted at reducing the number of main memory accesses
* Focus is on misses

* More ways
* bigger blocks

44

© tj

ELE 4142

 Multi-level Cache

* Local Miss Rate
* misses / access — for each cache level
* Miss rate ;, Miss rate,

* Global Miss Rate

* misses / processor accesses
* Global miss rate ; = Local miss rate
* Global miss rate, = Local miss rate ; x Local miss rate ,

45

© tj

	Slide 1: Processor Architecture Caches
	Slide 2: Cache Basics
	Slide 3: Cache Basics
	Slide 4: Cache Basics
	Slide 5: Cache Basics
	Slide 6: Cache Basics
	Slide 7: Cache Basics
	Slide 8: Cache Basics
	Slide 9: Cache Basics
	Slide 10: Cache Basics
	Slide 11: Cache Basics
	Slide 12: Cache Basics
	Slide 13: Cache Basics
	Slide 14: Cache Basics
	Slide 15: Cache Basics
	Slide 16: Cache Basics
	Slide 17: Cache Basics
	Slide 18: Cache Basics
	Slide 19: Cache Basics
	Slide 20: Cache Basics
	Slide 21: Cache Basics
	Slide 22: Cache Performance
	Slide 23: Cache Performance
	Slide 24: Cache Performance
	Slide 25: Cache Performance
	Slide 26: Cache Performance
	Slide 27: Cache Performance
	Slide 28: Cache Performance
	Slide 29: Cache Performance
	Slide 30: Cache Performance
	Slide 31: Cache Performance
	Slide 32: Cache Performance
	Slide 33: Cache Performance
	Slide 34: Cache Performance
	Slide 35: Cache Performance
	Slide 36: Cache Performance
	Slide 37: Cache Performance
	Slide 38: Cache Performance
	Slide 39: Cache Performance
	Slide 40: Cache Performance
	Slide 41: Cache Performance
	Slide 42: Cache Performance
	Slide 43: Cache Performance
	Slide 44: Cache Performance
	Slide 45: Cache Performance

