
Processor Architecture
Virtual Memory

Last modified 4/4/24

2 © tjELE 4142

Virtual Memory

• Virtual Memory

• Use main memory as a cache for secondary memory
• Typically HDD for PC systems, Flash for mobile systems

• Why?
• Allow multiple programs (VMs) to share a common memory

• Manage the limitations of main memory size

• How?
• Cache portions of the secondary memory in main memory

• Allows different programs to be resident in main memory with-in
different cache blocks (pages)

3 © tjELE 4142

Virtual Memory
• Virtual Memory

• If we cache different programs into main memory, we create an
addressing issue – processor uses the absolute address in main memory

• How does the processor know where specific parts of code get cached
to?

• The location can change each time the program is started
• The location can change if it gets swapped out and then back in again

• Each program gets its own address space
• This is a fictitious (virtual) address space
• Only the program can access its address space
• The address space is defined at compile time and does not change

• The processor must translate(through HW and SW) from this
“virtual address” to a physical address.

4 © tjELE 4142

Virtual Memory

• Linking Code

Module A

CALL B

Return

Length L

Module B

CALL C

Return

Length M

Module C

Return

Length N

0

L-1

Module A

JSR “L”

Return

Module B

JSR “L+M”

Return

Module C

Return

L

L+M-1

L+M

L+M+N-1

Object Modules

Load Module

5 © tjELE 4142

Virtual Memory
• Terminology

• Virtual Memory operates like a cache but some of the terms
used are different for historical reasons

• Address generated by the processor – virtual address
• Blocks used in the VM system are called Pages
• Misses in the VM system are called Page Faults

• Physical Memory – typically refers to main memory (DRAM)

• Address Translation – converting the virtual memory address created
by the processor to a physical memory address associated with the
DRAM, flash or disk

• Swap Space – a copy of all the virtual memory space (required by a
process) on the HDD – makes finding unloaded pages easier (16GB)

6 © tjELE 4142

Virtual Memory
• Address Translation

• Each program has its own virtual memory space

• When loading the program, the processor will map the
virtual memory location loaded (used by the program) -
into the corresponding physical address actually used to
store the code/data
• Not all of the program need be loaded – only the pages needed

• Pages are fixed in size (remember these are cache blocks)

• Pages can be loaded into any main memory location the
processor chooses

7 © tjELE 4142

Virtual Memory

• Address Translation

• Overly simplistic example

Virtual addresses – created
by the compiler and used by
the processor

Physical addresses – The
actual location of blocks
(pages) in memory or on
disk

Virtual address Physical address

1234xxx --> dram 5463xxx

1235xxx --> dram 7638xxx

1236xxx --> hdd 1254xxx

1456xxx --> dram 5464xxx

8 © tjELE 4142

Virtual Memory

• Address Translation
• Page offset is constant

• Page must be translated

Virtual address space = 4GB

Physical address space = 1GB

Page offset – the memory
location within a page

Page size = 212 = 4KB

9 © tjELE 4142

Virtual Memory
• Address Translation

• Each program (process) will have its own virtual memory space

• But there is only 1 physical memory

• The VMM is responsible for physical memory management
• Protects programs from overwriting each other
• Allows programs to share

Only 1 physical memory

10 © tjELE 4142

Virtual Memory

• Page Fault

• The processor addresses a given virtual address
• If the address maps to the main memory – HIT

• If the address maps to the secondary memory – Miss = page fault

• Page fault - requires a page to be read from secondary
memory
• At 10ms access times (HDD) = 10M clock cycles to get the first byte

when running at 1GHz

• Need to transfer 4KB

• Must reduce page faults to the lowest possible value

11 © tjELE 4142

Virtual Memory
• Page Fault

• Approaches to reduce page fault impact

• Page size – large enough to capture large portions of the program
• 4KB, 16KB typical – but growing
• 1KB for mobile – smaller aps

• Fully associative placement

• Use SW to manage page faults
• Small overhead compared to the delay of a miss
• Can be very sophisticated in placement and replacement

• Use write-back
• Only when necessary (dirty)

12 © tjELE 4142

Virtual Memory
• Page Tables

• Remember – fully associative placement is costly due to the
time and circuitry needed to find the block (page) you are
looking for

• VM uses the existing memory addressing/decoding capability
built into main memory
• Each program (process) is allocated a space in main memory to place

the address translation information for that process – Page Table

• The processor includes a register to point to the location of the page
table for the currently running program – Page Table Register

• The page table maps each possible virtual memory location to a
physical memory location

13 © tjELE 4142

Virtual Memory

• Page Tables

Address known to
the program and
the processor

Physical address
to read from /
write to

Starting address of the
page table in main
memory – process
dependent

Main memory –
memory locations
(220 = 2M entries)

14 © tjELE 4142

Virtual Memory
• Page Tables

• Logical configuration

• In most systems – 1 page table but separate data
structures
• 1 for main memory
• 1 for secondary memory
• Always need to know where the page is in secondary memory – never

changes

15 © tjELE 4142

Virtual Memory
• Page Fault - read

• Page is not in main memory and the valid bit is NOT set in the
page table

• Processor throws an exception → gives control to the OS

• OS finds the page on disk (using the HDD portion of the page table)
• Located in the swap space

• If necessary – the OS determines which page to write back to the HDD
if the memory was full
• Must be dirty
• LRU is typical – but with a sophisticated process
• Often include a reference bit (indicates the page has been referenced

recently)

• OS returns control to the program and re-executes the read
• This time it finds the page in main memory

16 © tjELE 4142

Virtual Memory
• Page Fault - write

• Page is not in main memory and the valid bit is NOT set in the
page table

• Processor throws an exception → gives control to the OS

• OS finds the page on disk (using the HDD portion of the page table)

• If necessary – the OS determines which page to write back to the HDD
if the memory was full

• OS reads the page in

• OS returns control to the program and re-executes the write

• Uses a write-back approach – only writes when it is swapped back out
and dirty

17 © tjELE 4142

Virtual Memory

• Page Table Issue

• Every memory access requires 2 accesses
• 1 – for the page table lookup (translation) – in memory

• 1 – for the actual memory read/write – in memory

• Fortunately – Pages have high temporal and spatial locality

• Create a cache of the translation entries
• Translation-Lookaside Buffer (TLB)

18 © tjELE 4142

Virtual Memory

• Translation-Lookaside Buffer

Virtual Page number
maps to the tag if fully
associative and some
combination of tag and
index if set-associative

19 © tjELE 4142

Virtual Memory

• TLB Hit

• Page is in main memory
• Tag matches

• Valid bit is 1

• Physical address is provided to the cache
• Ref bit is set

• If a write – dirty bit is set

20 © tjELE 4142

Virtual Memory
• TLB Miss

• Page is not in the TLB

• Check the page table

• Hit
• load the page info into the TLB
• Must have a replacement policy

• Provide the physical address to the cache

• Miss → Page Fault
• Throw an exception …
• Once the page is loaded in memory and the entry added to the TLB – re-

issue the read/write

21 © tjELE 4142

Virtual Memory
• TLB Miss

• Page is not in the TLB

• Check the page table

• Hit
• load the page info into the TLB
• Must have a replacement policy

• Provide the physical address to the cache

• Miss → Page Fault
• Throw an exception …
• Once the page is loaded in memory and the entry added to the TLB – re-

issue the read/write

22 © tjELE 4142

Virtual Memory

• TLB

	Slide 1: Processor Architecture Virtual Memory
	Slide 2: Virtual Memory
	Slide 3: Virtual Memory
	Slide 4: Virtual Memory
	Slide 5: Virtual Memory
	Slide 6: Virtual Memory
	Slide 7: Virtual Memory
	Slide 8: Virtual Memory
	Slide 9: Virtual Memory
	Slide 10: Virtual Memory
	Slide 11: Virtual Memory
	Slide 12: Virtual Memory
	Slide 13: Virtual Memory
	Slide 14: Virtual Memory
	Slide 15: Virtual Memory
	Slide 16: Virtual Memory
	Slide 17: Virtual Memory
	Slide 18: Virtual Memory
	Slide 19: Virtual Memory
	Slide 20: Virtual Memory
	Slide 21: Virtual Memory
	Slide 22: Virtual Memory

