Last modified 4/4/24

 Virtual Memory

e Use main memory as a cache for secondary memory
* Typically HDD for PC systems, Flash for mobile systems

 Why?
* Allow multiple programs (VMs) to share a common memory
* Manage the limitations of main memory size

* How?
e Cache portions of the secondary memory in main memory

* Allows different programs to be resident in main memory with-in
different cache blocks (pages)

ELE 4142 2 © tj

* Virtual Memory

* If we cache different programs into main memory, we create an
addressing issue — processor uses the absolute address in main memory

* How does the processor know where specific parts of code get cached
to?

* The location can change each time the program is started

* The location can change if it gets swapped out and then back in again

e Each program gets its own address space
* This is a fictitious (virtual) address space
* Only the program can access its address space
* The address space is defined at compile time and does not change

* The processor must translate(through HW and SW) from this
“virtual address” to a physical address.

ELE 4142 3 © tj

* Linking Code

Module A

CALLB

Return

Module B

CALLC

Return

Module C

Return

<

<«

) Length L

3 Length M

3 Length N

Object Modules

Load Module

/ 0
L-1

L

L+M-1

L+M
\L+M+N-1

Module A

JSR llL”

Return

Module B

JSR “L+M”

Return

Module C

Return

© tj

ELE 4142

* Terminology

* Virtual Memory operates like a cache but some of the terms
used are different for historical reasons

* Address generated by the processor — virtual address
* Blocks used in the VM system are called Pages
* Misses in the VM system are called Page Faults

* Physical Memory — typically refers to main memory (DRAM)

* Address Translation — converting the virtual memory address created
by the processor to a physical memory address associated with the
DRAM, flash or disk

* Swap Space — a copy of all the virtual memory space (required by a
process) on the HDD — makes finding unloaded pages easier (16GB)

Ot

ELE 4142

e Address Translation

Each program has its own virtual memory space

When loading the program, the processor will map the
virtual memory location loaded (used by the program) -
into the corresponding physical address actually used to
store the code/data

* Not all of the program need be loaded — only the pages needed

Pages are fixed in size (remember these are cache blocks)

Pages can be loaded into any main memory location the
processor chooses

Ot

e Address Translation

Virtual addresses — created
by the compiler and used by
the processor

Virtual addresses

Address translation

Physical addresses

LR

* Overly simplistic example

ELE 4142

Virtual address

ew 1 ¢
e
=

Disk addresses

Physical address

1234xxx --> dram 5463xxx
1235xxx --> dram 7638xxx
1236xxx --> hdd 1254xxx
1456xxx --> dram 5464xxx

Physical addresses — The
actual location of blocks
(pages) in memory or on
disk

© tj

* Address Translation
» Page offset is constant
e Page must be translated

Virtual address

=¥ 210) 20 21) 277 60 2-0a0000eck doaco=dto 15141312 111098 ----vvvvv-- 3210

Virtual page number Page offset

Virtual address space = 4GB Page offset —the memory

location within a page
Translation)

Physical address space = 1GB Page size = 212 = 4KB

21%) B2) B77 coaodbacadacoooonoac 15141312111098 -+ feeeee 3210

Physical page number Page offset

Physical address

ELE 4142 8 © tj

e Address Translation

e Each program (process) will have its own virtual memory space

Virtual address

Virtual address

Virtual address

Virtual address

SR 20/ 2B ETR e e - 1514131211 1098 ------- 3210 31 30/ 20028 2T e 15141312111098 -------- 3210 3 3NPORBRT -------mzanc--cees-- 161403 12 11 10988 - 3210 302028 2T - - = - TRl 1514131211 1098 ------- 3210
Virtual page number Page offset | | Virtual page number | Page offset Virtual page number Page off Virtual page number Page offset
Translation Translation Translation
e 1614131211 1098 «ooipereeee 3210 202827 reeveeeefieienannnins 41312111098 «opoeve 3210 29227 rrrverenfrrinuinanns 1514 18312111088 «oopeeeee 3210
Physical page number ‘ Page offset | | Physical pag b | Page offset ‘ Physical page number ‘ Page offset

ical address

Physical address

e But there is only 1 physical memory

Only 1 physical memory

e The VMM is responsible for physical memory management

ELE 4142

* Protects programs from overwriting each other
e Allows programs to share

© tj

e Page Fault

* The processor addresses a given virtual address
 If the address maps to the main memory — HIT
* If the address maps to the secondary memory — Miss = page fault

* Page fault - requires a page to be read from secondary
memory

e At 10ms access times (HDD) = 10M clock cycles to get the first byte
when running at 1GHz

* Need to transfer 4KB

* Must reduce page faults to the lowest possible value

ELE 4142 10

Ot

ELE 4142

* Page Fault

* Approaches to reduce page fault impact

Page size — large enough to capture large portions of the program
e 4KB, 16KB typical — but growing
e 1KB for mobile — smaller aps

Fully associative placement

Use SW to manage page faults
* Small overhead compared to the delay of a miss
e Can be very sophisticated in placement and replacement

Use write-back
* Only when necessary (dirty)

11

© tj

ELE 4142

* Page Tables

e Remember — fully associative placement is costly due to the
time and circuitry needed to find the block (page) you are
looking for

* VM uses the existing memory addressing/decoding capability
built into main memory

e Each program (process) is allocated a space in main memory to place
the address translation information for that process — Page Table

* The processor includes a register to point to the location of the page
table for the currently running program — Page Table Register

* The page table maps each possible virtual memory location to a
physical memory location

12

Ot

e Page Tables

Starting address of the
page table in main

Page table register

Virtual address

memory — process 3 iBioNeioNe 8 72 7o 40 & B0t B - 4 | 15 14 13 12 11 10 9 8 ++oeveee 3210 Address known to
dependent Virtual page number Page offset the program and
. A W2 the processor
Valid Physical page number
Main memory —
memory locations
(220 = 2M entries) [2 '
Page table
Jd18
If 0 then page is not
present in memory
D108 2 T i . e S n] .15 14 13 12 11 10 9 8 }----- 3210 Phy5|Ca| address
Physical page number Page offset to read from /

ELE 4142

write to

Physical address

13 © tj

* Page Tables

Virtual page
4 3 9 number
* Logical configuration =™ rugewn
Physical page or Physical memory
Valid disk address

Disk storage

N

* |n most systems — 1 page table but separate data
structures
e 1for main memory
e 1 for secondary memory

* Always need to know where the page is in secondary memory — never
changes

DA

Y =) Y Y = Y Y =) Y

ELE 4142 14 © tj

ELE 4142

* Page Fault - read

* Page is not in main memory and the valid bit is NOT set in the
page table

* Processor throws an exception -2 gives control to the OS

* OS finds the page on disk (using the HDD portion of the page table)
* Located in the swap space

* |f necessary —the OS determines which page to write back to the HDD
if the memory was full

e Must be dirty
* LRU is typical — but with a sophisticated process

e Often include a reference bit (indicates the page has been referenced
recently)

* OS returns control to the program and re-executes the read
* This time it finds the page in main memory

15 © tj

ELE 4142

* Page Fault - write

* Page is not in main memory and the valid bit is NOT set in the
page table

* Processor throws an exception -2 gives control to the OS
* OS finds the page on disk (using the HDD portion of the page table)

* |f necessary — the OS determines which page to write back to the HDD
if the memory was full

* OS reads the page in

e OS returns control to the program and re-executes the write

* Uses a write-back approach — only writes when it is swapped back out
and dirty

16 © tj

ELE 4142

* Page Table Issue

* Every memory access requires 2 accesses
e 1-—for the page table lookup (translation) —in memory
e 1-for the actual memory read/write —in memory

* Fortunately — Pages have high temporal and spatial locality

e Create a cache of the translation entries
* Translation-Lookaside Buffer (TLB)

17

© tj

Virtual Page number
maps to the tag if fully
associative and some
combination of tag and
index if set-associative

ELE 4142

* Translation-Lookaside Buffer

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address

| |
1/(0]1 .
1711 . Physical memory
1(1]1 ot ’
101 -
0/0]|0
1[0]1 -

Page table

Physical page

Valid Dirty Ref or disk address

Disk storage

=0 == OO OO O|O|O|O
Y Vo | [Y e, | Y R ', | S M | [] S

—_ O =] =[O = = O = = =] —

[y
(0¢]

./

o

./'

/—\
— . S T
o« 7 | |
- Vi u |
" laimmg: o o
v

© tj

P K TLB
I Virtual page Physical page

number Valid Dirty Ref Tag address
I l 1]0]1 o
1 1 : = Physical memory
T[0[3 ax
0jo0jo
101 .
L] L] L]
Page table
L4 Page IS In ma I n memory A PI:jYSLcaId(pjage
or disk address
1]/0]1 =
o Tag matCheS 1 88 :// Disk storage
. >~ SToTo—e
* Valid bitis 1 (K N— e
070[0 s ———— @ | I
1] . (—
111 o
0/0f0 o~
11111 4

* Physical address is provided to the cache
* Ref bitis set
* If a write —dirty bit is set

ELE 4142 19 © tj

e TLB Miss

number Valid Dirty Ref Tag address
[
T]0]1 .
1 1 } e Physical memory
1[0 =X
0/0]|0
o 3 & h 101 .
Page is not in the TLB
Physical page
Valid Dirty Ref or disk address
1/0[1 =
1]/0]0 el i
TToTa :: Disk storage
* Check th tabl St
eck the page table o :
I
1]0][1] fo
E—mwm o
0]0]0 7
K ’ (—
111 o
o Hi sl
Hit

* load the page info into the TLB
* Must have a replacement policy
* Provide the physical address to the cache

* Miss = Page Fault

* Throw an exception ...

* Once the page is loaded in memory and the entry added to the TLB —re-
issue the read/write

ELE 4142 20 © tj

e TLB Miss

number Valid Dirty Ref Tag address
[
T]0]1 .
1 1 } e Physical memory
1[0 =X
0/0]|0
o 3 & h 101 .
Page is not in the TLB
Physical page
Valid Dirty Ref or disk address
1/0[1 =
1]/0]0 el i
TToTa :: Disk storage
* Check th tabl St
eck the page table o :
I
1]0][1] fo
E—mwm o
0]0]0 7
K ’ (—
111 o
o Hi sl
Hit

* load the page info into the TLB
* Must have a replacement policy
* Provide the physical address to the cache

* Miss = Page Fault

* Throw an exception ...

* Once the page is loaded in memory and the entry added to the TLB —re-
issue the read/write

ELE 4142 21 © tj

Virtual address

FIROOROG. M -5 st . . - ST 14 13 12 11 10 9+--------3 2 1 0
| Virtual page number Page offset ‘
J20 »{ 12 Virtual address
Valid Dirty Tag Physical page number
TLB 0= TLB access

[

TLB hit < -
EF=
G—]
e TLBmiss __ No TLB hit? Yes

\20 exception Physical address
Physical page number | Page offset No Yes
Physical address
: : Block Byte
Physical address tag | Cache index offset offset
+1 8 8 4 2 Try to read data
from cache
Write access
bit on?
48 Wiite prott_ection Try to write data
J12 Data Cache miss stall | No Yes -SXCERUON to cache
Valid Tag I while read block
Deliver data
to the CPU
Cache | | Cache miss stall [N Yes
while read block

~ Write data into cache,
3 update the dirty bit, and
. put the data and the
Cache hit address into the write buffer|

432

Data

ELE 4142 22 © tj

	Slide 1: Processor Architecture Virtual Memory
	Slide 2: Virtual Memory
	Slide 3: Virtual Memory
	Slide 4: Virtual Memory
	Slide 5: Virtual Memory
	Slide 6: Virtual Memory
	Slide 7: Virtual Memory
	Slide 8: Virtual Memory
	Slide 9: Virtual Memory
	Slide 10: Virtual Memory
	Slide 11: Virtual Memory
	Slide 12: Virtual Memory
	Slide 13: Virtual Memory
	Slide 14: Virtual Memory
	Slide 15: Virtual Memory
	Slide 16: Virtual Memory
	Slide 17: Virtual Memory
	Slide 18: Virtual Memory
	Slide 19: Virtual Memory
	Slide 20: Virtual Memory
	Slide 21: Virtual Memory
	Slide 22: Virtual Memory

