
Processor Architecture
Pipeline

Last modified 4/4/24

2 © tjELE 4142

Pipelining

• Simple Datapath

3 © tjELE 4142

Pipelining

• 5 Stages of Instruction Execution

• Fetch (IF)

• Decode / Register Access (ID)

• Execute (EX)

• Memory Access (MEM)

• Write Back (WB)

Pipeline these at 1 stage each

4 © tjELE 4142

Pipelining

• Pipelining
• Complete each instruction before starting the next

• 1ns to complete each instruction

No Pipeline

0 1 2 3 4 5

D

C D

B C D

A B C D

CPU Execute A B C D

A B C D

1ns 1ns 1ns 1ns 1ns

Execute = fetch instruction, decode, execute, mem, write back

Clock Cycle (1ns)

Waiting

Instructions

Retired

Instructions

5 © tjELE 4142

Pipelining

• Pipelining
• Break complex tasks into smaller chunks

• Start the next instruction as soon as each subtask is
complete

0 1 2 3 4 5 6 7 8

D

C D

B C D

A B C D

Fetch A B C D

Decode A B C D

Execute A B C D

Memory A B C D

Write back A B C D

A B C

200ps 200ps 200ps 200ps 200ps 200ps 200ps 200ps

Waiting

Instructions

Retired

Instructions

Clock Cycle (200ps)

Pipeline

6 © tjELE 4142

Pipelining

• Pipeline Performance
• Pipelining does not reduce the time to execute an

instruction (1ns in this example)
• In fact – it usually increases the instruction execution time due to

costs of implementing the pipeline

• Pipelining does increase the instruction throughput
• 1 instruction completes every 200ps

Time

IF/ID/EX/MEM/WB 1 2 3

1000 1000 1000

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

EX 1 2 3 4 5 6 7 8 9 10 11 12 13

MEM 1 2 3 4 5 6 7 8 9 10 11 12

WB 1 2 3 4 5 6 7 8 9 10 11

No Pipeline

Pipeline
1 inst

1 inst

7 © tjELE 4142

Pipelining

• Pipeline Performance

• Non-pipelined
• 1M Instructions → 1M * 1000ps = 1ms

• Pipelined (5 stage)
• 1M Instructions → Fill Time + Execute time

• 1M Instructions → 4 * 200ps + 1M * 200ps ≅ 200us

• Faster completion time: 1/5

• Overall throughput improvement of 5x

5 stages
1000ps non-pipelined
200ps/stage pipelined

8 © tjELE 4142

Pipelining

• Pipeline Performance – with penalty

• Non-pipelined
• 1M Instructions → 1M * 1000ps = 1ms

• Pipelined (5 stage w/20% penalty per stage)
• 1M Instructions → Fill Time + Execute time

• 1M Instructions → 4 * 240ps + 1M * 240ps ≅ 240us

• Faster completion time: 1/4.2

• Overall throughput improvement of 4.2x

5 stages
1000ps non-pipelined
240ps/stage pipelined

9 © tjELE 4142

Pipelining

• Pipeline Performance

• Not all instructions need to use all the processing stages

• Can’t take advantage of this in either case because we
need a consistent clock frequency

Instruction IF ID/RR EX MEM WB

ADD X X X X

OR X X X X

LW X X X X X

SW X X X X

BEQ X X X

3, 4, or 5 stages
required

10 © tjELE 4142

Pipelining

• Pipeline Performance

• Processing stages typically do not all take the same
amount of time

• Non-pipelined
• 800ps clock period

• Pipelined
• Need to account for worst case cycle time

• 200ps clock period

Stage IF ID/RR EX MEM WB

Delay 200ps 100ps 200ps 200ps 100ps

11 © tjELE 4142

Pipelining

• Pipeline Performance

• Non-pipelined
• 1M Instructions → 1M * 800ps = 800us

• Pipelined (5 stage w/20% penalty per stage)
• 1M Instructions → Fill Time + Execute time

• 1M Instructions → 4 * 240ps + 1M * 240ps ≅ 240us

• Faster completion time: 240/800

• Overall throughput improvement of 3.33x

12 © tjELE 4142

Pipelining

• Pipeline Performance

• Non-pipelined
• 1M Instructions → 1M * 800ps = 800us

• Pipelined (15 stage w/20% penalty per stage)
• 1M Instructions → Fill Time + Execute time

• 1M Instructions → 14 * 84ps + 1M * 84ps ≅ 84us

• Faster completion time: 84/800

• Overall throughput improvement of 9.52x

15 stages
800ps non-pipelined
(1000ps/15)*1.2 = 84ps/stage pipelined

13 © tjELE 4142

Pipelining

• MIPS Pipeline Considerations

• All instructions are 32-bits
• Easier to fetch and decode in one cycle

• Few and regular instruction formats
• R, I, J

• Can decode and read registers in one step - why?

• Load/store addressing
• Can calculate address in 3rd stage, access memory in 4th stage

• Alignment of memory operands
• Memory access takes only one cycle

14 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline

15 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• Registers are required to hold intermediate values

between stages

64 bits 128 bits 97 bits 64 bits

Active registers will be highlighted
 left side – write
 right side - read

16 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• lw instruction - IF

PC increments
 feeds back
 stored in IF/ID reg incase needed
Instruction is latched in IF/ID reg

17 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – ID (instruction decode and register read)

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

18 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – EX

Add read data 1 to sign extended immediate
 from the instruction and store in EX/MEM
Store zero in EX/MEM
Store read data 2 in EX/MEM
Calculate PC offset and store in EX/MEM

19 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – MEM

Data memory is read and stored in MEM/WB
ALU result is stored in MEM/WB

20 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – WB

MEM/WB register is read and fed back to
 the register file

This fails! Why?

21 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – WB

MEM/WB register is read and fed back to
 the register file

This fails! Why?

register address for 3 instructions after lw
fails for any instruction with a WB stage

22 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – WB

MEM/WB register is read and fed back to
 the register file

add write register value to ID/EX, EX/MEM, MEM/WB

23 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• sw instruction - IF

PC increments
 feeds back
 stored in IF/ID reg incase needed
Instruction is latched in IF/ID reg

sw

24 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – ID (instruction decode and register read)

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

sw

25 © tjELE 4142

Add read data 1 to sign extended immediate
 from the instruction and store in EX/MEM
Store zero in EX/MEM
Store read data 2 in EX/MEM
Calculate PC offset and store in EX/MEM

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – EX

26 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – MEM

Data memory is written from EX/MEM
ALU result is stored in MEM/WB
Data memory read data is stored in MEM/WB

27 © tjELE 4142

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – WB

MEM/WB register is read and fed back to
 the register file

28 © tjELE 4142

Pipelining
• Pipeline Control

• Many more control signals than we show

• IF – all control lines operate the same way for all
instructions
• PC is read
• Program Memory is read
• PC is updated

• ID - all control lines operate the same way for all
instructions
• Instruction is decoded
• Registers are read

29 © tjELE 4142

Pipelining
• Pipeline Control

• EX – executes or calculates an address
• RegDst – choose between 2nd or 3rd register field for WB
• ALUOp – L/S, Branch, or R-type
• ALUSrc – selects Read Data 2 or sign extended immediate

• These are generated in the ID stage but used in the EX stage
• Must pass them forward through the ID/EX register

• MEM – R/W to memory and selects the offset branch value
• MemRead , MemWrite – memory read / write
• Branch – combined with “zero” selects the offset branch to feed back

to the PC

• These are generated in the ID stage but used in the MEM stage
• Must pass them forward through the ID/EX register and the EX/MEM register

30 © tjELE 4142

Pipelining

• Pipeline Control

• WB – chooses what to write back
• RegWrite – enables a write to the register file

• MemtoReg – choose between ALU output or memory output to
feed back to the register file

• These are generated in the ID stage but used in the MEM stage
• Must pass them forward through the ID/EX, EX/MEM and MEM/WB

registers

31 © tjELE 4142

Pipelining

• Pipeline Control

	Slide 1: Processor Architecture Pipeline
	Slide 2: Pipelining
	Slide 3: Pipelining
	Slide 4: Pipelining
	Slide 5: Pipelining
	Slide 6: Pipelining
	Slide 7: Pipelining
	Slide 8: Pipelining
	Slide 9: Pipelining
	Slide 10: Pipelining
	Slide 11: Pipelining
	Slide 12: Pipelining
	Slide 13: Pipelining
	Slide 14: Pipelining
	Slide 15: Pipelining
	Slide 16: Pipelining
	Slide 17: Pipelining
	Slide 18: Pipelining
	Slide 19: Pipelining
	Slide 20: Pipelining
	Slide 21: Pipelining
	Slide 22: Pipelining
	Slide 23: Pipelining
	Slide 24: Pipelining
	Slide 25: Pipelining
	Slide 26: Pipelining
	Slide 27: Pipelining
	Slide 28: Pipelining
	Slide 29: Pipelining
	Slide 30: Pipelining
	Slide 31: Pipelining

