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e Simple Datapath

Add

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [31-26]

Instruction [25-21]

RegDst
Branch

Add

ALU
result

| MemRead

| MemtoReg

Control ALUO
MemWrite

| ALUSrc

RegWrite

_| Read

Instruction [20-16]

register 1 Reaq

| Read data 1

-4

. Ty

Instruction [15—11]

register 2

(©

0
M | | Write Read
¥ [ register data 2

Write

Instruction [15-0]

data Registers

—“xc=

16@32

Instruction [5-0]

© tj



* 5 Stages of Instruction Execution

Fetch (IF)

Decode / Register Access (ID)
Execute (EX)

Memory Access (MEM)
Write Back (WB)

Pipeline these at 1 stage each
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* Pipelining
* Complete each instruction before starting the next
* 1ns to complete each instruction

No Pipeline

Clock Cycle (1ns)

Waiting
Instructions

CPU Execute
D
Retired
Instructions
1ns Ins 1ns Ins 1ns

Execute =fetch instruction, decode, execute, mem, write back
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* Pipelining
* Break complex tasks into smaller chunks

e Start the next instruction as soon as each subtask is
complete

Clock Cycle (200ps)
O ' 3L208%93 |45 568UV 8

Waiting
Instructions

Fetch
Decode
Pipeline |Execute
Memory
Write back

Retired A|lB]|C
Instructions

200ps 200ps 200ps 200ps 200ps 200ps 200ps 200ps
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* Pipeline Performance

* Pipelining does not reduce the time to execute an
instruction (1ns in this example)

e In fact — it usually increases the instruction execution time due to
costs of implementing the pipeline

* Pipelining does increase the instruction throughput
e 1instruction completes every 200ps

No Pipeline ——
Time 1000 ( 1000 ) 1000
IF/ID/EX/MEM/WB 1 o1 3
i ! 1 inst
Pipeline

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF 1 2 3 4 10 11 12 13
ID 1 2 3 9 10 11 12
EX 1 2 8 9 10 11
MEM 1 7 8 9 10
WB 6 7 8 9
1inst
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ELE 4142

* Pipeline Performance

* Non-pipelined
* 1M Instructions =2 1M * 1000ps = 1ms

Pipelined (5 stage)
* 1M Instructions = Fill Time + Execute time
e 1M Instructions = 4 * 200ps + 1M * 200ps = 200us

Faster completion time: 1/5
Overall throughput improvement of 5x

5 stages
1000ps non-pipelined
200ps/stage pipelined

© tj



ELE 4142

* Pipeline Performance — with penalty

Non-pipelined
* 1M Instructions =2 1M * 1000ps = 1ms

Pipelined (5 stage w/20% penalty per stage)
* 1M Instructions = Fill Time + Execute time
e 1M Instructions = 4 * 240ps + 1M * 240ps = 240us

Faster completion time: 1/4.2
Overall throughput improvement of 4.2x

5 stages
1000ps non-pipelined
240ps/stage pipelined
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* Pipeline Performance

* Not all instructions need to use all the processing stages

ADD X X X X

OR X X X X 3, 4, or 5 stages
L K i S A % required

SW X X X X

BEQ X X X

e Can’t take advantage of this in either case because we
need a consistent clock frequency
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* Pipeline Performance

* Processing stages typically do not all take the same
amount of time

Delay 200ps 100ps 200ps 200ps 100ps

* Non-pipelined
* 800ps clock period

* Pipelined
* Need to account for worst case cycle time
e 200ps clock period
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* Pipeline Performance

* Non-pipelined
* 1M Instructions = 1M * 800ps = 800us

Pipelined (5 stage w/20% penalty per stage)
* 1M Instructions = Fill Time + Execute time
e 1M Instructions = 4 * 240ps + 1M * 240ps = 240us

Faster completion time: 240/800
Overall throughput improvement of 3.33x

11
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* Pipeline Performance

15 stages
800ps non-pipelined
(1000ps/15)*1.2 = 84ps/stage pipelined

Non-pipelined
* 1M Instructions = 1M * 800ps = 800us

Pipelined (15 stage w/20% penalty per stage)

* 1M Instructions = Fill Time + Execute time
e 1M Instructions = 14 * 84ps + 1M * 84ps = 84us

Faster completion time: 84/800
Overall throughput improvement of 9.52x

12
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* MIPS Pipeline Considerations

e All instructions are 32-bits
* Easier to fetch and decode in one cycle

* Few and regular instruction formats
* R
* Can decode and read registers in one step - why?

* Load/store addressing
 Can calculate address in 3™ stage, access memory in 4th stage

* Alignment of memory operands
 Memory access takes only one cycle

13
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* Mapping the datapath to a pipeline

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access
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* Mapping the datapath to a pipeline

* Registers are required to hold intermediate values

between stages

128 bits

—
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4
—={ 0
m
u PC »- Address
X
—\ 1
Instruction
memory

Instruction

:

Y

Active registers will be highlighted
left side — write
right side - read
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* Mapping the datapath to a pipeline
* lw instruction - IF

Iw
|

! Instruction fetch
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IF/ID ID/EX EX/MEM MEM/WB
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Instruction is latched in IF/ID reg
16
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* Mapping the datapath to a pipeline

* lw instruction—1ID (instruction decode and register read)

Iw

Instruction decode
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M
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x

1

Instruction
memory

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

Y

R

c
-% Read
2 register 1 Read
’Q data 1
= Read
register 2
Registers paoq
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> Write
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ELE 4142

Data
memory

© tj



* Mapping the datapath to a pipeline
* |lw instruction — EX

Iw

Execution

Add read data 1 to sign extended immediate
from the instruction and store in EX/MEM

Store zero in EX/MEM

Store read data 2 in EX/MEM

Calculate PC offset and store in EX/MEM
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* Mapping the datapath to a pipeline
* lw instruction — MEM
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ALU result is stored in MEM/WB
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* Mapping the datapath to a pipeline
* lw instruction — WB
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* Mapping the datapath to a pipeline
* lw instruction — WB

register address for 3 instructions after lw
fails for any instruction with a WB stage

i
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This fails! Why?
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* Mapping the datapath to a pipeline
* lw instruction — WB

add write register value to ID/EX, EX/MEM, MEM/WB
NN\
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MEM/WB register is read and fed back to
the register file ?
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* Mapping the datapath to a pipeline
* sw instruction - IF

I W I

! Instruction fetch
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* Mapping the datapath to a pipeline

* sw instruction —1ID (instruction decode and register read)

SwW

Instruction decode
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Instruction
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Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX
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* Mapping the datapath to a pipeline
* sw instruction — EX

sw

Execution
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* Mapping the datapath to a pipeline
* sw instruction — MEM
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* Mapping the datapath to a pipeline

* sw instruction — WB
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* Pipeline Control

* Many more control signals than we show

* |F —all control lines operate the same way for all
instructions
e PCisread
* Program Memory is read
 PCis updated

* |ID - all control lines operate the same way for all
instructions

* |nstruction is decoded
* Registers are read

28
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* Pipeline Control

e EX — executes or calculates an address
* RegDst — choose between 2" or 3 register field for WB
 ALUOp —L/S, Branch, or R-type
e ALUSrc —selects Read Data 2 or sign extended immediate

* These are generated in the ID stage but used in the EX stage
* Must pass them forward through the ID/EX register

« MEM - R/W to memory and selects the offset branch value

* MemRead , MemWrite — memory read / write

* Branch — combined with “zero” selects the offset branch to feed back
to the PC

* These are generated in the ID stage but used in the MEM stage
* Must pass them forward through the ID/EX register and the EX/MEM register

29
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* Pipeline Control

* WB — chooses what to write back
* RegWrite — enables a write to the register file

* MemtoReg — choose between ALU output or memory output to
feed back to the register file

* These are generated in the ID stage but used in the MEM stage

* Must pass them forward through the ID/EX, EX/MEM and MEM/WB
registers [we|

Instruction
=L

wWB

[TT1

IF/ID ID/EX EX/MEM MEM/WB
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* Pipeline Control
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