Last modified 4/4/24




ELE 4142

e Simple Datapath

Add

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [31-26]

Instruction [25-21]

RegDst
Branch

Add

ALU
result

| MemRead

| MemtoReg

Control ALUO
MemWrite

| ALUSrc

RegWrite

_| Read

Instruction [20-16]

register 1 Reaq

| Read data 1

-4

. Ty

Instruction [15—11]

register 2

(©

0
M | | Write Read
¥ [ register data 2

Write

Instruction [15-0]

data Registers

—“xc=

16@32

Instruction [5-0]

© tj



* 5 Stages of Instruction Execution

Fetch (IF)

Decode / Register Access (ID)
Execute (EX)

Memory Access (MEM)
Write Back (WB)

Pipeline these at 1 stage each

ELE 4142 3 © tj



* Pipelining
* Complete each instruction before starting the next
* 1ns to complete each instruction

No Pipeline

Clock Cycle (1ns)

Waiting
Instructions

CPU Execute
D
Retired
Instructions
1ns Ins 1ns Ins 1ns

Execute =fetch instruction, decode, execute, mem, write back

ELE 4142 4 © tj



* Pipelining
* Break complex tasks into smaller chunks

e Start the next instruction as soon as each subtask is
complete

Clock Cycle (200ps)
O ' 3L208%93 |45 568UV 8

Waiting
Instructions

Fetch
Decode
Pipeline |Execute
Memory
Write back

Retired A|lB]|C
Instructions

200ps 200ps 200ps 200ps 200ps 200ps 200ps 200ps

ELE 4142 5 © tj



* Pipeline Performance

* Pipelining does not reduce the time to execute an
instruction (1ns in this example)

e In fact — it usually increases the instruction execution time due to
costs of implementing the pipeline

* Pipelining does increase the instruction throughput
e 1instruction completes every 200ps

No Pipeline ——
Time 1000 ( 1000 ) 1000
IF/ID/EX/MEM/WB 1 o1 3
i ! 1 inst
Pipeline

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF 1 2 3 4 10 11 12 13
ID 1 2 3 9 10 11 12
EX 1 2 8 9 10 11
MEM 1 7 8 9 10
WB 6 7 8 9
1inst
ELE 4142 6

14
13
12
11
10

15
14
13
12
11

Ot



ELE 4142

* Pipeline Performance

* Non-pipelined
* 1M Instructions =2 1M * 1000ps = 1ms

Pipelined (5 stage)
* 1M Instructions = Fill Time + Execute time
e 1M Instructions = 4 * 200ps + 1M * 200ps = 200us

Faster completion time: 1/5
Overall throughput improvement of 5x

5 stages
1000ps non-pipelined
200ps/stage pipelined

© tj



ELE 4142

* Pipeline Performance — with penalty

Non-pipelined
* 1M Instructions =2 1M * 1000ps = 1ms

Pipelined (5 stage w/20% penalty per stage)
* 1M Instructions = Fill Time + Execute time
e 1M Instructions = 4 * 240ps + 1M * 240ps = 240us

Faster completion time: 1/4.2
Overall throughput improvement of 4.2x

5 stages
1000ps non-pipelined
240ps/stage pipelined

© tj



* Pipeline Performance

* Not all instructions need to use all the processing stages

ADD X X X X

OR X X X X 3, 4, or 5 stages
L K i S A % required

SW X X X X

BEQ X X X

e Can’t take advantage of this in either case because we
need a consistent clock frequency

ELE 4142 9 © tj



ELE 4142

* Pipeline Performance

* Processing stages typically do not all take the same
amount of time

Delay 200ps 100ps 200ps 200ps 100ps

* Non-pipelined
* 800ps clock period

* Pipelined
* Need to account for worst case cycle time
e 200ps clock period

© tj



ELE 4142

* Pipeline Performance

* Non-pipelined
* 1M Instructions = 1M * 800ps = 800us

Pipelined (5 stage w/20% penalty per stage)
* 1M Instructions = Fill Time + Execute time
e 1M Instructions = 4 * 240ps + 1M * 240ps = 240us

Faster completion time: 240/800
Overall throughput improvement of 3.33x

11

© tj



ELE 4142

* Pipeline Performance

15 stages
800ps non-pipelined
(1000ps/15)*1.2 = 84ps/stage pipelined

Non-pipelined
* 1M Instructions = 1M * 800ps = 800us

Pipelined (15 stage w/20% penalty per stage)

* 1M Instructions = Fill Time + Execute time
e 1M Instructions = 14 * 84ps + 1M * 84ps = 84us

Faster completion time: 84/800
Overall throughput improvement of 9.52x

12

© tj



ELE 4142

* MIPS Pipeline Considerations

e All instructions are 32-bits
* Easier to fetch and decode in one cycle

* Few and regular instruction formats
* R
* Can decode and read registers in one step - why?

* Load/store addressing
 Can calculate address in 3™ stage, access memory in 4th stage

* Alignment of memory operands
 Memory access takes only one cycle

13

© tj



* Mapping the datapath to a pipeline

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access

32
\\ @ \\

| | | |
| | | |
| | | |
| | | |
| | | |
I | I I
I I I I
| | | |
| | ] |
| | | |
| | | |
I | I I
I I | I
| | | |
| | I I
Add T T | I
| | | |
& I [ : I
I | I I
I | I I
| | | |
| | | |
| | | |
| | | |
i " : > Hee}dt 1 Read : ’\ : :
u PC H®—>{Address | egstel} data 1 i Zord i
X | Read | ALU |
1 | register 2 | S 4 Address |
Instruction [~ Registers ' result FLee;d‘
i ata
: Write Read : Data
Instruction | register data 2 | Memory
e | | Write I |
: data : Write
| | »| data
| |
| |
: © Sign- :
| |
| |
| |
| |
| |
| |
| |
| |
| |

ELE 4142 14 © tj



* Mapping the datapath to a pipeline

* Registers are required to hold intermediate values

between stages

128 bits

—
Add
4
—={ 0
m
u PC »- Address
X
—\ 1
Instruction
memory

Instruction

:

Y

Active registers will be highlighted
left side — write
right side - read

ELE 4142

MEM/WB

64 bits

Address

Data
memory

Read
data




* Mapping the datapath to a pipeline
* lw instruction - IF

Iw
|

! Instruction fetch

ELE 4142

IF/ID ID/EX EX/MEM MEM/WB
4 d Ad:
Shift e
left2
—p
[
Address 2 Read

3 " | register 1 Read

@ data 1

<1l |Read -

Instruction register2 By
> e Registers poqq > |
memaory | wiite d:lgz Address data
register Data
Write memory
data
-y Write
1 data
PC increments 16 sign. | 2 L
feeds back v extend
stored in IF/ID reg incase needed
Instruction is latched in IF/ID reg
16

© tj



* Mapping the datapath to a pipeline

* lw instruction—1ID (instruction decode and register read)

Iw

Instruction decode

0

M

u Address
x

1

Instruction
memory

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

Y

R

c
-% Read
2 register 1 Read
’Q data 1
= Read
register 2
Registers paoq
5 | Write data 2
" | register
> Write
data
16 :
. . | Sign-
v extend

ELE 4142

Data
memory

© tj



* Mapping the datapath to a pipeline
* |lw instruction — EX

Iw

Execution

Add read data 1 to sign extended immediate
from the instruction and store in EX/MEM

Store zero in EX/MEM

Store read data 2 in EX/MEM

Calculate PC offset and store in EX/MEM

ELE 4142

EX/MEM

1? Sign- | 32

| extend

IF/ID g
Add S
4 —
Shift
left 2
0
M
u PC > Address 5 Rigas
g 2 [ | register 1 fpces =
: S data 1
E Read
Instruction = regismaggisters
—‘
memory Write Read
register data 2
Write
data

Read
Address data
Data
memory
Write
data

MEM/WB

~“x c =°

18

© tj



* Mapping the datapath to a pipeline
* lw instruction — MEM

0

M

u PC Address
x

1

Instruction
memory

\ i

Data memory is read and stored in MEM/WB

ALU result is stored in MEM/WB

ELE 4142

IF/ID

ID/EX

[ 4
-% Read T
= " | register 1 eal
:é g data 1
= » | Read
register 2
Registers paaq
_I_>Write data 2
register
Write
data
16 5
X . | Sign-
v extend

| Iw
| Memory
EX/MEM
Add Add >
ﬂ
=
Read
| Address data
Data
memory
Write
data

xec=2°

© tj



* Mapping the datapath to a pipeline
* lw instruction — WB

4 —

0
M
u Address
X
L\ 1

Instruction
memory

Y

MEM/WB register is read and fed back to
the register file

This fails! Why?

ELE 4142

¥4

A
7| extend

Read
data

lw
Write back

MEM/WB

f=4
2 Read
2 register 1 Read
B data 1
= Read

register 2
@ Registers po.q

o—»-| Write data 2

register

Write

data

16 Sign-




* Mapping the datapath to a pipeline
* lw instruction — WB

register address for 3 instructions after lw
fails for any instruction with a WB stage

i

Address

Instruction
memory

MEM/WB register is read and fed back to
the register file

This fails! Why?

ELE 4142

EX/MEM

Add Add
result

IFAD ID/EX
Shift
left 2
§
= Read
2 register Read >
B data 1
= Read
registef 2
> Registers pg.q
Wi data 2
regis

rite
data

16 1
3 Sign- 32
7| extend

¥4

Address

| Write

" | data

Data
memory

Read
data

lw
Write back

MEM/WB

21

© tj



* Mapping the datapath to a pipeline
* lw instruction — WB

add write register value to ID/EX, EX/MEM, MEM/WB
NN\

)

MEM/WB

0

M
u PC Address
X

f

emor:

3;—@
=)
-~
]
Instruction
; ‘r
=3 = = =
25 & = o &1
55 a7 28 wi
15} @ ©
o = &
[]
@

MEM/WB register is read and fed back to
the register file ?

ELE 4142 22 © tj



* Mapping the datapath to a pipeline
* sw instruction - IF

I W I

! Instruction fetch

ELE 4142

IF/ID ID/EX EX/MEM MEM/WB
4 d Ad:
Shift e
left2
—p
[
Address 2 Read

3 " | register 1 Read

@ data 1

<1l |Read -

Instruction register2 By
> e Registers poqq > |
memaory | wiite d:lgz Address data
register Data
Write memory
data
-y Write
1 data
PC increments 16 sign. | 2 L
feeds back v extend
stored in IF/ID reg incase needed
Instruction is latched in IF/ID reg
23

© tj



* Mapping the datapath to a pipeline

* sw instruction —1ID (instruction decode and register read)

SwW

Instruction decode

IF/ID

Address

Instruction
memory

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

ELE 4142

Y
Instruction
g

ID/EX EX/MEM MEM/WB
e
Shift
left 2
Read Read
register 1 e >
e data 1 -
Read ——
register2 Read
Registers peaq @ Address ke |
Write data 2
register Data
Write memory
data
| Write
data
16 :
B Sign- 32 >
v extend

© tj



* Mapping the datapath to a pipeline
* sw instruction — EX

sw

Execution

ELE 4142

IF/ID ID/EX EX/MEM MEM/WB
Add > \‘
4 AdgAdd 1
(%3
0
M
u PC | Address c Read
x 2 register 1 Read >
L\ 1 g data 1
£ Read Zero =
Instruction < register 2 ALU AU Read 0
—e i > >
memory | write I'-!t-:glsters.Rea d result Address Ei M
register data 2 Data u
; memor L
—s—{ Write L y 1
data
4 Write
data
Add read data 1 to sign extended immediate 16 [ sign- | 32
. . . L
from the instruction and store in EX/MEM T | extend
Store zero in EX/MEM
Store read data 2 in EX/MEM
Calculate PC offset and store in EX/MEM
25




* Mapping the datapath to a pipeline
* sw instruction — MEM

u PC Address

Instruction
memory

Instruction

A\

.

Read

register 1

Read
register 2

Registers Qaaq

Write

" | register

Write
data

Add Add

ﬂ

Data memory is written from EX/MEM
ALU result is stored in MEM/WB

Data memory read data is stored in MEM/WB

MEM/WB

ELE 4142

Read
data.

Y

© tj



* Mapping the datapath to a pipeline

* sw instruction — WB

0
M
u PC Address
X

1

Instruction
memory

MEM/WB register is read and fed back to
the register file

ELE 4142

IF/ID

ID/EX

Instruction
6 I 1

Read
register 1 Read
data 1

Read
register 2

Registers pgaq
Write data 2
register
Write
data

16 Sign-

A -
v | extend

32

MEM/WB

Address

Write
data

Data
memory

Read
data

27




ELE 4142

* Pipeline Control

* Many more control signals than we show

* |F —all control lines operate the same way for all
instructions
e PCisread
* Program Memory is read
 PCis updated

* |ID - all control lines operate the same way for all
instructions

* |nstruction is decoded
* Registers are read

28

© tj



ELE 4142

* Pipeline Control

e EX — executes or calculates an address
* RegDst — choose between 2" or 3 register field for WB
 ALUOp —L/S, Branch, or R-type
e ALUSrc —selects Read Data 2 or sign extended immediate

* These are generated in the ID stage but used in the EX stage
* Must pass them forward through the ID/EX register

« MEM - R/W to memory and selects the offset branch value

* MemRead , MemWrite — memory read / write

* Branch — combined with “zero” selects the offset branch to feed back
to the PC

* These are generated in the ID stage but used in the MEM stage
* Must pass them forward through the ID/EX register and the EX/MEM register

29

Ot



ELE 4142

* Pipeline Control

* WB — chooses what to write back
* RegWrite — enables a write to the register file

* MemtoReg — choose between ALU output or memory output to
feed back to the register file

* These are generated in the ID stage but used in the MEM stage

* Must pass them forward through the ID/EX, EX/MEM and MEM/WB
registers [we|

Instruction
=L

wWB

[TT1

IF/ID ID/EX EX/MEM MEM/WB

30

© tj



* Pipeline Control

PCSrc
ID/EX
wB LfX/MEM
Control M | wB
EX M
IF/ID
Add I\I
A Add Add
Branch
2
% ALUSrc
&
(0 & £
=
u PC Address S Read &
x 5 register 1 Read - 2
1 =l data 1 =
1 L I Z B
Instruction = I Rl ALU Ay Read
memory AN Heglstersdlgsaag gM rw Address data [
register i Data
| Write x memor
data P 1 v
Write
data
Instruction |
[15-0] 16 sign- | 32 ALU

ELE 4142

x
Instruction
[20-186]

@

Instruction
[15-11]

control

ALUOpP

| MEM/WB

MemRead

MemtoReg

xc2©

=

6
3
<
—=0
M
u
X
1

RegDst

31

© tj



	Slide 1: Processor Architecture Pipeline
	Slide 2: Pipelining
	Slide 3: Pipelining
	Slide 4: Pipelining
	Slide 5: Pipelining
	Slide 6: Pipelining
	Slide 7: Pipelining
	Slide 8: Pipelining
	Slide 9: Pipelining
	Slide 10: Pipelining
	Slide 11: Pipelining
	Slide 12: Pipelining
	Slide 13: Pipelining
	Slide 14: Pipelining
	Slide 15: Pipelining
	Slide 16: Pipelining
	Slide 17: Pipelining
	Slide 18: Pipelining
	Slide 19: Pipelining
	Slide 20: Pipelining
	Slide 21: Pipelining
	Slide 22: Pipelining
	Slide 23: Pipelining
	Slide 24: Pipelining
	Slide 25: Pipelining
	Slide 26: Pipelining
	Slide 27: Pipelining
	Slide 28: Pipelining
	Slide 29: Pipelining
	Slide 30: Pipelining
	Slide 31: Pipelining

