Last modified 4/4/24

* Pipeline

PCSrc
ID/EX
wB LfX/MEM
Control M | wB | MEM/WEB
EX M wB
IF/ID
Add I\I
A Adg Add
Branch
2
= ALUSrc
=)
3
() 3 %
= &
u PC Address S Read & X
x 5 register 1 Read - 2 2
. =l data 1 = QE,
B Read Zero - =
Instruction = register 2 s ALU 5y | Read
memory . Registers poaq 6 result Address data [[7] g
?g”il;er data 2 M / M
WQ u Data u
- rite x memor =
data < 1 ¥ 1
Write
data
Instruction |
[15-0] 16 sign- | 32 6 ALU MemB
N extend g control Smgad
Instruction
[20-16] ALUOp
—=0
M
Instruction u
[15—11] 3
— RegDst

ELE 4142

© tj

* Pipeline Operation

200 400 600

800

WB actually occurs in the
first half of the next clock

cycle

1000

Time

|
N/
m
><_/

MEM

add $s0, $t0, $t1 | IF —= 1D

|
&

* |n this example

e Reads are done from program memory and the register file

* The ALU executes
 The data memory is not used
* Write is done on the register file

ELE 4142 3

ELE 4142

* Pipeline Hazards

* Hazards are conditions where the next instruction cannot
perform its assigned pipeline action in the next clock cycle

* 3 types
e Structural
* Data
e Control

© tj

ELE 4142

e Structural Hazards

* These hazards result from a resource conflict

* Classic case is Harvard vs. vonNeuman memory
architectures

* vonNeuman architectures share a single memory for program and
data

* Alw or sw command requires access to data memory to load or
store the data value

* It would not be possible to fetch the appropriate instruction during
this clock cycle since the memory would be in use

* The IF would be stalled and a “bubble” would be created in the
pipeline

Ot

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

e Structural Hazards

 vonNeuman memory architecture

IF w2 3N |stall | 4 5
ID LW, o982 3 4
EX w2 bubble
MEM 2 3

ELE 4142

WB Lw
data me access prevents a concurrent instructh

6
5
4
bubble
3
n fetch

7

6

5

4
bubble

9

U O N

10

O N 00 L

11
10
9
8
7

12
11
10
9
8

13
12
11
10
9

14
13
12
11
10

© tj

e Data Hazards

* These hazards result from a dependence of one
instruction on another instruction still in the pipeline

* Consider the following code snippit

add SsO, StO, St1
sub St2, SsO, St3

* The value of SsO is needed to perform the subtraction

ELE 4142 7 © tj

 Data Hazards

add SsO, StO, St1
sub St2, SsO, St3

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF add sub sub sub 3 4 5 6 7 8 9 10 11 12 13
ID add stall stall sub 3 4 5 6 7 8 9 10 11 12
EX add bubble bubble sub 3 4 5 6 7 8 9 10 11
MEM add bubble bubble sub 3 4 5 6 7 8 9 10
WB bubble bubble sub 3 4 5 6 7 8 9

» 2 clock cycle bubbles are created

* |t would be 3 bubbles — except we can take advantage of our
convention

* writes occur in the first half of the clock cycle
* reads occur in the second half of the clock cycle
* the WB occurs during the same clock cycle as the register read

ELE 4142 8 © tj

e Data Hazards

add SsO, StO, St1
sub St2, SsO, St3

! 200 400 600 800 1000 1200 1400 1600
Time | T T T T T T I

add $s0, $t0, $t1 | IF —E ID EEX MEM %w}
bubble bubble) bubble bubble) bubble
49 @ @ @) ®
bubble bubble) (bubble bubble) (bubble
@) @) O Q. @)

IF

- Bl

* 2 clock cycle bubbles are created

* |t would be 3 bubbles — except we can take advantage of our
convention

* writes occur in the first half of the clock cycle
* reads occur in the second half of the clock cycle
e the WB occurs during the same clock cycle as the register read

sub $t2, $s0, $t3

ELE 4142 9 © tj

e Data Hazards

ELE 4142

* In many cases the compiler can avoid a data hazard

add SsO, StO, St1
sub St2, SsO, St3
or Ss2, StO, Stl
and Ss3, StO, St3
add Ss4, St1, St3

re-order the instruction to remove

add Ss0, St0, St1 the hazard condition

or Ss2, StO, Stl
and Ss3, StO, St3
add Ss4, St1, St3
sub St2, SsO, St3

10 © tj

ELE 4142

e Data Hazards

e Hardware can also be used to avoid data hazards
 called forwarding or bypassing

e provide the needed data as soon as it is valid
* requires extra circuitry

Program
execution

800

order Time
(in instructions)

add $s0, $t0, $t1

400

sub $t2, $s0, $t3

11

600

MEM

SEX

MEM

© t]

e Data Hazards

ELE 4142

e Hardware cannot avoid all data hazards
e cannot go backwards in time !

. 200 400 600 800 1000
Time T - " : -
lw $s0, 20(St1) IF = 1D @—MEM ws
sub $t2, $s0, $t3 F—= 1D EXl——MEM s
Program
eegRo 200 400 600 800 1000 1200 1400
order Time : T : T T T
(in instructions)
lw $50, 20($t1) IF
@ O
MEM— WB |

sub $t2, $s0, $t3

12

© tj

e Data Hazards

* Forwarding plus compiler optimizations can avoid
additional data hazards

Tw
Tw
— add
SW
Tw

— add
Sw

stall

stall

ELE 4142

1w

$tl, 0($t0) Tw $tl, 0($t0)

(5t2)-4($t0) 1w

$t3, 12($t0) add
8($t0) SwW

$t5, $t1,($t4) add

$t5, 16($t0) Sw $t5, 16($t0)
13 cycles 11 cycles

13 © tj

ELE 4142

e Control Hazards

* These hazards result from making a decision while other
instructions continue to progress through the pipeline

* Branch instructions are the most common example
* don’t know whether to load the next instruction or not

* three approaches
* stall
e predict
e delay

14

© tj

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF
ID
EX
MEM
WB

ELE 4142

Control Hazards - stall

* Do not load the next instruction into the pipeline

add beq 3 3 8 9 10 11
add stall | stall |1 8 | 1o § 10
add beq bubble bubble 8 9
add beq bubble bubble 8
add beq bubble bubble

12

11

10
9
8

13
12
11
10
9

e during decode — know you have a branch
* during execute — know if taking branch or not

e PC will be updated

* Next cycle — fetch the next instruction based on PC value

15

14
13
12
11
10

15
14
13
12
11

16
15
14
13
12

17
16
15
14
13

18
17
16
15
14

© tj

e Control Hazards - stall

* Even if you add circuitry to detect the branch and update
the PC all during the decode — can’t avoid a stall

Program
execution Tim 200 400 600 800 1000 1200 1400 "
b, ime T T 1 T I T T =
(in instructions)
add $4,$5, 86 ["he"| |Rea| AW | 55 [Reg
Instruction Data

RanSpar 48 m fetch] R - N —— 3

bubble/_bubbley bubble/(bubble/(bubble

@ @ @ O
or $7, $8, $9 < »|Instruction Data
y 400 ps fetch Feolly A access | °9

16 © tj

ELE 4142

e Control Hazards - predict

* Many algorithms

* Simplest — assume branch will not be taken
* no penalty if correct
* stall only when wrong

ELE 4142 17 © tj

* Control Hazards — predict
* Predict branch not taken

Branch Not Taken
Prediction correct!

Branch Taken
Prediction wrong!

ELE 4142

Program

execution 200 400 600 800 1000 1200 1400

Time

order
(in instructions)

Instruction Data
add $4, $5, $6 fetch Regip AR access |9
Instruction Data
Sl 62,40 200 ps fetch Reg |Gl access | 19
~<———Instruction Data
Iw $3, 300($0) 200 ps| fetch Reo (§ RU access |9

Program
execution Time 200 400 600 800 1000 1200 1400
Order T T T T T T T
(in instructions)
Instructi Data
add $4' $5’ $6 nsf;ltjghlon Reg ARY access Reg
Instruction Data
beq $1, $2, 40 m fetch Fiag gAll access |19
bubble/Cbubble/Cbubble/(bubble/(bubble
O
or $7, $8, $9 <————»|nstruction Data
400 ps fetch TP LT access | N°9
18

© tj

ELE 4142

e Control Hazards - predict

 Static Branch Prediction
* Predict backward branches - taken
* Predict forward branches — not taken
* Looping code
» executes the loop 100 times
* jumps out of the loop 1 time

* Dynamic Branch Prediction
» Keep track of recent branch behavior (for each branch)
* Assume recent behavior will continue
* When wrong — clear history and start over
 Hardware intensive

19

© tj

ELE 4142

e Control Hazards - delay

* Delayed Decision

* Pipeline always executes the instruction immediately after the
branch

* The branch then executes (only 1 cycle delay allowed)

* Requires the next instruction to be independent of the branch
decision

* Compiler is designed to set this up

20

© tj

e Control Hazards - delay

¢ DeIayed Decision (assume HW to limit bubble to 1 cycle)

add St0,St1,5t2
beg S$t1,5t2,-30

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF add beq 3 8 9 191 |11 Delale.13) IV B0~ 76 N0 17 eie Bl 18
ID add stall 8 9 TP e e 0 I ARMECG T 0w T
EX add beq bubble 8 9 aommie1 0! 270 113 | 2 1 siVie)| 1
MEM add beq bubble 8 9 10 11 12 13 14 15 16
WB add beq bubble 8 9 TR 1V TR FER R A RET:
re-order

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF beq add 8 9 1o /" 11 | 12 P s 17 et || 20
ID add 8 9 o 112 ST L ANEE a1 170 e
EX beq add 8 9 10 Dotldenbadtas (A B Va2 s 1116 bz | a8
MEM beq add 8 9 oAl [0 |3 M1 || 1eeieee iy
WB beq add 8 9 g il [21 iz | 140 G e

ELE 4142 21 © tj

e Superscalar
e Parallelism at the micro-architecture level

Wiriteback

Felch Decode lssue

Flostng-Pont | NEON
i i Dual ssue

Queue

ARM Cortex-A7 Pipeline

Queuve Issueé Whiteback

Decode, Rename &
Fetch Dispatch

(11 10 E el ey -

L

Loop Cache

iV v \i ii A Y

ARM Cortex-A15 Pipeline

ELE 4142 22 © tj

* Processor Architecture

15tage 1 Siage 1

128 bits

I |

Dispatch

Instruction Fetch
Register Rename

|

15518 [B-antry Quews per lssue port)

swsces] 11

&
Cl?:’wr o

le -
(i gt

ko

=

W

& er ALY &
hifter
cludes
SIMD)

[mErllrla;' Retiremant Buffer i g

{BTE) (25-sntry)
eturn Stack
m 3-way Instruction Decode

Global History Buffer | || L1 Instruction Cache

Branch Prediction

Branch Target Builer
R

Load-Store
[_Store Bufier_]
L1 Data Cache

L2 Cache Control

Bus Interface Unit (BIU)

E
&
i
a
E
Q
2
0
[y]
<
3
£
j=]
5}
=
=
<

I

ELE 4142

23

Copyright () 2011 Hiroshige Goto All rights resarved.

© tj

ELE 4142

* Processor Architecture

128 Entry

Inst. TLB
(4-way)

Instruction

Fetch

32KB Inst. Cache (4-way associative)

A,

18 Entry Instruction Queue

Hardware

&l i RoE !

\
\

| Macro-Op Handling |

Macro-Op Decode
and Loop Stream
Detect

Execution Engine
including Out of
Order Hardware

Register Alias Table and Allocator

Retirement [§
Register File |im

_)I

128-bit
FMUL
FDIV

Load
Address

Store
Address

Memory Order Buffer

128-bit
FMUL
FDIV

128-bit
FMUL
FDIV

64 Entry Data TLB
(4-way associative)

32KB Dual Ported Data
Cache (8-way associative)

Ny

24

© tj

* Modern Example

‘pandasal siyby |1y 0109 abjysonH Loz (2) ubpfdos

1-3 Stages (Integer) 1 Stage

1 Stage

1 Stage

3 Stages 1 Stage 1 Stage

abels yoREALM J2PIO-J0-IN0

= ==) Branch Resolution

FPU/NEON(SIMD; i

— _:ww 'Emc ¥

(EMre-91 Jo EMZE} | nAW
ayae) eeq L1

aun
Butpimaua) g s-pEnD
[_smunasos]
Hupn aJoig-peo

waishs Aowapy

Y BNES]-RINPY JBRI0-I0-ND:

__u!_!n!.i 7
BNaNT W InE|

umﬂm yaeds|q L+£

ECC RAMs

1

Jm=1Bay
d O3 [EMIA

abeig aweuay JaysiBay

_ JoUuDH Youelg

SUDRINASU| 2 - -

L2 Cache Control

abeig apooaq
uopanasul-leng

Bus Interface Unit (BIU)

AMBA 3 AXI 64-bit

[astr et || e |

(anra-g) 10
ayosed uonanagsuy 1

abeyg yojajaid uononssu|

wesbeiq 3o0ig 3107 GY-X3U0D WHY

© tj

25

ELE 4142

	Slide 1: Processor Architecture Pipeline Hazards
	Slide 2: Pipeline Hazards
	Slide 3: Pipeline Hazards
	Slide 4: Pipeline Hazards
	Slide 5: Pipeline Hazards
	Slide 6: Pipeline Hazards
	Slide 7: Pipeline Hazards
	Slide 8: Pipeline Hazards
	Slide 9: Pipeline Hazards
	Slide 10: Pipeline Hazards
	Slide 11: Pipeline Hazards
	Slide 12: Pipeline Hazards
	Slide 13: Pipeline Hazards
	Slide 14: Pipeline Hazards
	Slide 15: Pipeline Hazards
	Slide 16: Pipeline Hazards
	Slide 17: Pipeline Hazards
	Slide 18: Pipeline Hazards
	Slide 19: Pipeline Hazards
	Slide 20: Pipeline Hazards
	Slide 21: Pipeline Hazards
	Slide 22: Pipelining
	Slide 23: Pipelining
	Slide 24: Pipelining
	Slide 25: Pipelining

