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* Pipeline Operation
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* |n this example

e Reads are done from program memory and the register file

* The ALU executes
 The data memory is not used
* Write is done on the register file
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* Pipeline Hazards

* Hazards are conditions where the next instruction cannot
perform its assigned pipeline action in the next clock cycle

* 3 types
e Structural
* Data
e Control
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e Structural Hazards

* These hazards result from a resource conflict

* Classic case is Harvard vs. vonNeuman memory
architectures

* vonNeuman architectures share a single memory for program and
data

* Alw or sw command requires access to data memory to load or
store the data value

* It would not be possible to fetch the appropriate instruction during
this clock cycle since the memory would be in use

* The IF would be stalled and a “bubble” would be created in the
pipeline
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e Structural Hazards

 vonNeuman memory architecture

IF w2 3N |stall | 4 5
ID LW, o982 3 4
EX w2 bubble
MEM 2 3
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e Data Hazards

* These hazards result from a dependence of one
instruction on another instruction still in the pipeline

* Consider the following code snippit

add SsO, StO, St1
sub St2, SsO, St3

* The value of SsO is needed to perform the subtraction
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 Data Hazards

add SsO, StO, St1
sub St2, SsO, St3

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF add sub sub sub 3 4 5 6 7 8 9 10 11 12 13
ID add stall stall sub 3 4 5 6 7 8 9 10 11 12
EX add bubble bubble sub 3 4 5 6 7 8 9 10 11
MEM add bubble bubble sub 3 4 5 6 7 8 9 10
WB bubble bubble sub 3 4 5 6 7 8 9

» 2 clock cycle bubbles are created

* |t would be 3 bubbles — except we can take advantage of our
convention

* writes occur in the first half of the clock cycle
* reads occur in the second half of the clock cycle
* the WB occurs during the same clock cycle as the register read
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e Data Hazards

add SsO, StO, St1
sub St2, SsO, St3

! 200 400 600 800 1000 1200 1400 1600
Time | T T T T T T I

add $s0, $t0, $t1 | IF —E ID EEX MEM %w}
bubble bubble)  bubble bubble)  bubble
49 @ @ @) ®
bubble bubble ) ( bubble bubble) ( bubble
@) @) O Q. @)

IF

- Bl

* 2 clock cycle bubbles are created

* |t would be 3 bubbles — except we can take advantage of our
convention

* writes occur in the first half of the clock cycle
* reads occur in the second half of the clock cycle
e the WB occurs during the same clock cycle as the register read

sub $t2, $s0, $t3
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e Data Hazards

ELE 4142

* In many cases the compiler can avoid a data hazard

add SsO, StO, St1
sub St2, SsO, St3
or Ss2, StO, Stl
and Ss3, StO, St3
add Ss4, St1, St3

re-order the instruction to remove

add Ss0, St0, St1 the hazard condition

or Ss2, StO, Stl
and Ss3, StO, St3
add Ss4, St1, St3
sub St2, SsO, St3
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e Data Hazards

e Hardware can also be used to avoid data hazards
 called forwarding or bypassing

e provide the needed data as soon as it is valid
* requires extra circuitry

Program
execution

800

order Time
(in instructions)

add $s0, $t0, $t1

400

sub $t2, $s0, $t3
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600

MEM

SEX

MEM
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e Data Hazards
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e Hardware cannot avoid all data hazards
e cannot go backwards in time !

. 200 400 600 800 1000
Time T - " : -
lw $s0, 20(St1) IF = 1D @—MEM ws
sub $t2, $s0, $t3 F—= 1D EXl——MEM s
Program
eegRo 200 400 600 800 1000 1200 1400
order Time : T : T T T
(in instructions)
lw $50, 20($t1) IF
@ O
MEM— WB |

sub $t2, $s0, $t3

12
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e Data Hazards

* Forwarding plus compiler optimizations can avoid
additional data hazards

Tw
Tw
— add
SW
Tw

— add
Sw

stall

stall
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1w

$tl, 0($t0) Tw $tl, 0($t0)

(5t2)-4($t0) 1w

$t3, 12($t0) add
8($t0) SwW

$t5, $t1,($t4) add

$t5, 16($t0) Sw $t5, 16($t0)
13 cycles 11 cycles
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e Control Hazards

* These hazards result from making a decision while other
instructions continue to progress through the pipeline

* Branch instructions are the most common example
* don’t know whether to load the next instruction or not

* three approaches
* stall
e predict
e delay

14
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Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
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MEM
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Control Hazards - stall

* Do not load the next instruction into the pipeline

add beq 3 3 8 9 10 11
add stall | stall |1 8 | 1o § 10
add beq bubble bubble 8 9
add beq bubble bubble 8
add beq bubble bubble
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e during decode — know you have a branch
* during execute — know if taking branch or not

e PC will be updated

* Next cycle — fetch the next instruction based on PC value
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e Control Hazards - stall

* Even if you add circuitry to detect the branch and update
the PC all during the decode — can’t avoid a stall

Program
execution Tim 200 400 600 800 1000 1200 1400 "
b, ime T T 1 T I T T =
(in instructions)
add $4,$5, 86 ["he"|  |Rea| AW | 55 [Reg
Instruction Data

RanSpar 48 m fetch ] R - N —— 3

bubble/_bubbley bubble/( bubble/(bubble

@ @ @ O
or $7, $8, $9 < »|Instruction Data
y 400 ps fetch Feolly A access | °9
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e Control Hazards - predict

* Many algorithms

* Simplest — assume branch will not be taken
* no penalty if correct
* stall only when wrong
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* Control Hazards — predict
* Predict branch not taken

Branch Not Taken
Prediction correct!

Branch Taken
Prediction wrong!
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Program

execution 200 400 600 800 1000 1200 1400

Time

order
(in instructions)

Instruction Data
add $4, $5, $6 fetch Regip AR access |9
Instruction Data
Sl 62,40 200 ps fetch Reg |Gl access | 19
~<———Instruction Data
Iw $3, 300($0) 200 ps| fetch Reo (§ RU access |9

Program
execution Time 200 400 600 800 1000 1200 1400
Order T T T T T T T
(in instructions)
Instructi Data
add $4' $5’ $6 nsf;ltjghlon Reg ARY access Reg
Instruction Data
beq $1, $2, 40 m fetch Fiag gAll access |19
bubble/Cbubble/Cbubble/(bubble/(bubble
O
or $7, $8, $9 <————»|nstruction Data
400 ps fetch TP LT access | N°9
18
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e Control Hazards - predict

 Static Branch Prediction
* Predict backward branches - taken
* Predict forward branches — not taken
* Looping code
» executes the loop 100 times
* jumps out of the loop 1 time

* Dynamic Branch Prediction
» Keep track of recent branch behavior (for each branch)
* Assume recent behavior will continue
* When wrong — clear history and start over
 Hardware intensive

19
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e Control Hazards - delay

* Delayed Decision

* Pipeline always executes the instruction immediately after the
branch

* The branch then executes (only 1 cycle delay allowed)

* Requires the next instruction to be independent of the branch
decision

* Compiler is designed to set this up

20
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e Control Hazards - delay

¢ DeIayed Decision (assume HW to limit bubble to 1 cycle)

add St0,St1,5t2
beg S$t1,5t2,-30

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF add beq 3 8 9 191 |11 Delale.13 ) IV B0~ 76 N0 17 eie Bl 18
ID add stall 8 9 TP e e 0 I ARMECG T 0w T
EX add beq bubble 8 9 aommie1 0! 270 113 | 2 1 siVie)| 1
MEM add beq bubble 8 9 10 11 12 13 14 15 16
WB add  beq bubble 8 9 TR 1V TR FER R A RET:
re-order

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF beq add 8 9 1o /" 11 | 12 P s 17 et || 20
ID add 8 9 o 112 ST L ANEE a1 170 e
EX beq add 8 9 10 Dotldenbadtas (A B Va2 s 1116 bz | a8
MEM beq add 8 9 oAl [0 |3 M1 || 1eeieee iy
WB beq add 8 9 g il [ 21 iz | 140 G e
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e Superscalar
e Parallelism at the micro-architecture level
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* Processor Architecture
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* Processor Architecture
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* Modern Example
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