
Processor Architecture
Pipeline Hazards

Last modified 4/4/24

2 © tjELE 4142

Pipeline Hazards

• Pipeline

3 © tjELE 4142

Pipeline Hazards

• Pipeline Operation

• In this example
• Reads are done from program memory and the register file

• The ALU executes

• The data memory is not used

• Write is done on the register file

WB actually occurs in the
first half of the next clock
cycle

4 © tjELE 4142

Pipeline Hazards

• Pipeline Hazards

• Hazards are conditions where the next instruction cannot
perform its assigned pipeline action in the next clock cycle

• 3 types
• Structural

• Data

• Control

5 © tjELE 4142

Pipeline Hazards

• Structural Hazards

• These hazards result from a resource conflict

• Classic case is Harvard vs. vonNeuman memory
architectures
• vonNeuman architectures share a single memory for program and

data

• A lw or sw command requires access to data memory to load or
store the data value

• It would not be possible to fetch the appropriate instruction during
this clock cycle since the memory would be in use

• The IF would be stalled and a “bubble” would be created in the
pipeline

6 © tjELE 4142

Pipeline Hazards

• Structural Hazards

• vonNeuman memory architecture

data memory access prevents a concurrent instruction fetch

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF LW 2 3 Stall 4 5 6 7 8 9 10 11 12 13 14

ID LW 2 3 bubble 4 5 6 7 8 9 10 11 12 13

EX LW 2 3 bubble 4 5 6 7 8 9 10 11 12

MEM LW 2 3 bubble 4 5 6 7 8 9 10 11

WB LW 2 3 bubble 4 5 6 7 8 9 10

7 © tjELE 4142

Pipeline Hazards

• Data Hazards

• These hazards result from a dependence of one
instruction on another instruction still in the pipeline

• Consider the following code snippit

add $s0, $t0, $t1

sub $t2, $s0, $t3

• The value of $s0 is needed to perform the subtraction

8 © tjELE 4142

Pipeline Hazards
• Data Hazards

add $s0, $t0, $t1
sub $t2, $s0, $t3

• 2 clock cycle bubbles are created
• It would be 3 bubbles – except we can take advantage of our

convention
• writes occur in the first half of the clock cycle

• reads occur in the second half of the clock cycle

• the WB occurs during the same clock cycle as the register read

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF add sub sub sub 3 4 5 6 7 8 9 10 11 12 13

ID add stall stall sub 3 4 5 6 7 8 9 10 11 12

EX add bubble bubble sub 3 4 5 6 7 8 9 10 11

MEM add bubble bubble sub 3 4 5 6 7 8 9 10

WB add bubble bubble sub 3 4 5 6 7 8 9

9 © tjELE 4142

Pipeline Hazards
• Data Hazards

add $s0, $t0, $t1
sub $t2, $s0, $t3

• 2 clock cycle bubbles are created
• It would be 3 bubbles – except we can take advantage of our

convention
• writes occur in the first half of the clock cycle
• reads occur in the second half of the clock cycle
• the WB occurs during the same clock cycle as the register read

10 © tjELE 4142

Pipeline Hazards
• Data Hazards

• In many cases the compiler can avoid a data hazard

add $s0, $t0, $t1
sub $t2, $s0, $t3
or $s2, $t0, $t1
and $s3, $t0, $t3
add $s4, $t1, $t3

add $s0, $t0, $t1
or $s2, $t0, $t1
and $s3, $t0, $t3
add $s4, $t1, $t3
sub $t2, $s0, $t3

re-order the instruction to remove
the hazard condition

11 © tjELE 4142

Pipeline Hazards

• Data Hazards

• Hardware can also be used to avoid data hazards
• called forwarding or bypassing

• provide the needed data as soon as it is valid

• requires extra circuitry

12 © tjELE 4142

Pipeline Hazards

• Data Hazards

• Hardware cannot avoid all data hazards
• cannot go backwards in time !

lw $s0, 20($t1)

sub $t2, $s0, $t3

13 © tjELE 4142

Pipeline Hazards

• Data Hazards

• Forwarding plus compiler optimizations can avoid
additional data hazards

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

14 © tjELE 4142

Pipeline Hazards

• Control Hazards

• These hazards result from making a decision while other
instructions continue to progress through the pipeline

• Branch instructions are the most common example
• don’t know whether to load the next instruction or not

• three approaches
• stall

• predict

• delay

15 © tjELE 4142

Pipeline Hazards

• Control Hazards - stall

• Do not load the next instruction into the pipeline

• during decode – know you have a branch

• during execute – know if taking branch or not

• PC will be updated

• Next cycle – fetch the next instruction based on PC value

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF add beq 3 3 8 9 10 11 12 13 14 15 16 17 18

ID add beq stall stall 8 9 10 11 12 13 14 15 16 17

EX add beq bubble bubble 8 9 10 11 12 13 14 15 16

MEM add beq bubble bubble 8 9 10 11 12 13 14 15

WB add beq bubble bubble 8 9 10 11 12 13 14

16 © tjELE 4142

Pipeline Hazards

• Control Hazards - stall

• Even if you add circuitry to detect the branch and update
the PC all during the decode – can’t avoid a stall

17 © tjELE 4142

Pipeline Hazards

• Control Hazards - predict

• Many algorithms

• Simplest – assume branch will not be taken
• no penalty if correct

• stall only when wrong

18 © tjELE 4142

Pipeline Hazards

• Control Hazards – predict
• Predict branch not taken

Branch Not Taken

Prediction correct!

Branch Taken

Prediction wrong!

19 © tjELE 4142

Pipeline Hazards

• Control Hazards - predict

• Static Branch Prediction
• Predict backward branches - taken

• Predict forward branches – not taken

• Looping code

• executes the loop 100 times

• jumps out of the loop 1 time

• Dynamic Branch Prediction
• Keep track of recent branch behavior (for each branch)

• Assume recent behavior will continue

• When wrong – clear history and start over

• Hardware intensive

20 © tjELE 4142

Pipeline Hazards

• Control Hazards - delay

• Delayed Decision
• Pipeline always executes the instruction immediately after the

branch

• The branch then executes (only 1 cycle delay allowed)

• Requires the next instruction to be independent of the branch
decision

• Compiler is designed to set this up

21 © tjELE 4142

Pipeline Hazards

• Control Hazards - delay

• Delayed Decision (assume HW to limit bubble to 1 cycle)

add $t0,$t1,$t2

beq $t1,$t2,-30

…

re-order

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF add beq 3 8 9 10 11 12 13 14 15 16 17 18 19

ID add beq stall 8 9 10 11 12 13 14 15 16 17 18

EX add beq bubble 8 9 10 11 12 13 14 15 16 17

MEM add beq bubble 8 9 10 11 12 13 14 15 16

WB add beq bubble 8 9 10 11 12 13 14 15

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF beq add 8 9 10 11 12 13 14 15 16 17 18 19 20

ID beq add 8 9 10 11 12 13 14 15 16 17 18 19

EX beq add 8 9 10 11 12 13 14 15 16 17 18

MEM beq add 8 9 10 11 12 13 14 15 16 17

WB beq add 8 9 10 11 12 13 14 15 16

22 © tjELE 4142

Pipelining

• Superscalar
• Parallelism at the micro-architecture level

23 © tjELE 4142

Pipelining

• Processor Architecture

24 © tjELE 4142

Pipelining

• Processor Architecture

25 © tjELE 4142

Pipelining

• Modern Example

	Slide 1: Processor Architecture Pipeline Hazards
	Slide 2: Pipeline Hazards
	Slide 3: Pipeline Hazards
	Slide 4: Pipeline Hazards
	Slide 5: Pipeline Hazards
	Slide 6: Pipeline Hazards
	Slide 7: Pipeline Hazards
	Slide 8: Pipeline Hazards
	Slide 9: Pipeline Hazards
	Slide 10: Pipeline Hazards
	Slide 11: Pipeline Hazards
	Slide 12: Pipeline Hazards
	Slide 13: Pipeline Hazards
	Slide 14: Pipeline Hazards
	Slide 15: Pipeline Hazards
	Slide 16: Pipeline Hazards
	Slide 17: Pipeline Hazards
	Slide 18: Pipeline Hazards
	Slide 19: Pipeline Hazards
	Slide 20: Pipeline Hazards
	Slide 21: Pipeline Hazards
	Slide 22: Pipelining
	Slide 23: Pipelining
	Slide 24: Pipelining
	Slide 25: Pipelining

