RADAR Equation

Last updated 3/27/24

RADAR Equation

- RADAR equation
- Signal to Noise Ratio - Tracking version

$$
S /_{N}=\frac{P_{T} G^{2} \lambda^{2} \sigma}{(4 \pi)^{3} R^{4} k T_{S} B_{N} L}
$$

- Signal to Noise Ratio - Searching version

$$
S / N=\frac{P_{a v} A t_{s} \sigma}{4 \pi \Omega R^{4} k T_{S} L}
$$

- Transmitter power
- $P_{T}=$ Peak transmit power
- $\mathrm{P}_{\text {AVE }}=$ Average value
- Transmitting pulses

- Duty cycle = pulse width $/$ pulse repetition interval
- $P_{\text {AVE }}=P_{T} *$ Duty Cycle
- Ex.
- 100us pulse with a 1 MW peak power
- 1 ms pulse repetition interval (1 Kz pulse frequency)
- $\rightarrow 10 \%$ duty cycle
- $\rightarrow 100 \mathrm{KW}$ average transmit power

RADAR Equation

- Transmit Gain
- Use directional antennas for transmi
$G=\frac{4 \pi A}{\lambda^{2}}$

src: everything RF
- A = Antenna aperture (effective aperture)
- λ = pulse signal wavelength

$$
=C T=C / f
$$

RADAR Equation

- Transmit signal spread factor
$S_{T x}=\frac{1}{4 \pi R^{2}}$
- $R=$ range

src: NASA/JPL

RADAR Equation

- Transmit losses
- Signal generation losses
- Antenna losses
- Environmental losses (atmospheric)
- Generally lumped together into a single factor

$$
L
$$

RADAR Equation

- Signal power density at the target

$$
P_{D_{\text {target }}}=\left[P_{T}\right]\left[\frac{4 \pi A}{\lambda^{2}}\right]\left[\frac{1}{4 \pi R^{2}}\right]\left[\frac{1}{L}\right]
$$

RADAR Equation

- Radar cross section - RCS
- σ
- Apparent size of target
- No necessarily the actual size , but a measure of how much of the incident radiation it reflects
- m^{2}
- Front of a truck vs the front to a sports car
- smooth surface vs a concave space

RADAR Equation

- Reflected power
- Incident wave power density X radar cross section
- $P_{\text {Reflected }}=\left[P_{T}\right]\left[\frac{4 \pi A}{\lambda^{2}}\right]\left[\frac{1}{4 \pi R^{2}}\right]\left[\frac{1}{L}\right] \sigma$

RADAR Equation

- Receive signal spread factor

$$
S_{R x}=\frac{1}{4 \pi R^{2}}
$$

- $R=$ range

RADAR Equation

- Receive Aperture
- Measure of how effective an antenna is at receiving the power of specific electromagnetic radiation

A

RADAR Equation

- Dwell Time
- The time that an antenna beam spends on a target
- Dependent on the beam size and speed of rotation of the antenna
τ

RADAR Equation

Receive Signal Energy =

$W \quad \frac{1}{m^{2}} \quad m^{2} \frac{1}{m^{2}} \quad m^{2} s=W s$

- Noise
- Atmospheric interference
- Solar noise
- Ground noise
- Other EM noise
- System noise
- Assume - Noise can be characterized as a noise temperature $=\mathrm{T}_{\mathrm{S}}$

Noise $\operatorname{power}(N)=k B_{N} T_{S}$

- k - Boltzmann's constant $=1.38 \times 10^{-23}$ joules $/ \mathrm{K}$
- B_{N} - receiver noise bandwidth
- Signal to Noise Ratio - Tracking version
- Know where the target is \rightarrow dwell time not part of the analysis
- $\mathrm{S} / \mathrm{N}=$ Received signal power / Noise power

$$
\frac{\left[P_{T}\right]\left[\frac{4 \pi A}{\lambda^{2}}\right]\left[\frac{1}{4 \pi R^{2}}\right]\left[\frac{1}{L}\right][\sigma]\left[\frac{1}{4 \pi R^{2}}\right][A]}{\mathrm{kB}_{\mathrm{N}} \mathrm{~T}_{\mathrm{S}}}
$$

- Note : $\mathrm{G}_{\mathrm{T}}=\left[\frac{4 \pi A}{\lambda^{2}}\right]$
- Let: $\mathrm{G}_{\mathrm{R}}=\left[\frac{4 \pi A}{\lambda^{2}}\right]$

$$
[\mathrm{A}] \rightarrow\left[\frac{G_{R} \lambda^{2}}{4 \pi}\right]
$$

- Assume $\mathrm{G}_{\mathrm{T}}=\mathrm{G}_{\mathrm{R}}=\mathrm{G}$

$$
S / /_{N}=\frac{P_{T} G^{2} \lambda^{2} \sigma}{(4 \pi)^{3} R^{4} k T_{S} B_{N} L}
$$

RADAR Equation

- Signal to Noise Ratio - Searching version
- Need to scan for the target
- Average power $=\mathrm{P}_{\mathrm{AV}}$
- Solid Angle $=\Omega$
- Scan time for $\Omega=\mathrm{t}_{\mathrm{s}}$

$$
S /_{N}=\frac{P_{a v} A t_{s} \sigma}{4 \pi \Omega R^{4} k T_{S} L}
$$

RADAR Equation

- Signal to Noise Ratio - Searching version

$$
S /{ }_{N}=\frac{P_{a v} A t_{s} \sigma}{4 \pi \Omega R^{4} k T_{S} L}
$$

solving for P_{av}

$$
P_{a v}=\frac{4 \pi \Omega R^{4} k T_{S} L\left(S /{ }_{N}\right)}{A t_{s} \sigma}
$$

- Linear function of everything except R
- Strong function of R
- P_{av} - Searching version

$$
P_{a v}=\frac{4 \pi \Omega R^{4} k T_{S} L\left(S /{ }_{N}\right)}{A t_{s} \sigma}
$$

- Assuming a given RADAR system performance and hardware:
- doubling the search range requires a $16 x$ increase in the average power
- capturing a $1 / 2$ size target with the same s / n requires a $2 x$ increase in average power

