Last updated 1/11/24

- Passive filter concerns
 - Each stage loads the previous stage
 - Best case gain is 1 (0dB)
 - Any non-infinite output load will change the filter output

- Why RC
 - It is much easier and cheaper to build integrated circuit capacitors and resistors than inductors

- Just buffer the passive filter Low Pass
 - Non-inverting
 - Load insensitive
 - Can be cascaded
 - Unity Gain

- Just buffer the passive filter Caveat # 1
 - The OpAmp has an internal Lowpass characteristic (GBWP)
 - Can be good or bad depending on the situation

- Buffer the passive filter with gain Low Pass
 - Non-inverting
 - Load insensitive
 - Can be cascaded
 - Selectable Gain

6

- Buffer the passive filter Caveat # 2
 - The filter has a relatively small input impedance
 - Loads the driver
 - Driver output impedance may affect the filter

- Buffer the passive filter Low Pass
 - Remove the reactive element from the input
 - Inverting
 - Selectable Gain

- Buffer the passive filter Low Pass
 - Remove the reactive element from the input
 - Non-inverting
 - Selectable gain
 - High frequencies → unity gain

$$f_C = \frac{1}{2\pi R_F C}$$

$$=1+\frac{R_F}{R_I}$$

A

 R_{-}

 $* A_{v \min} = 1 = 0 dB$

- First order High Pass
 - Non-inverting
 - Unity Gain

 $= \frac{1}{\left(\frac{f}{f_c}\right)^2}$

- First order High Pass
 - Non-inverting
 - Selectable Gain

- First order High Pass
 - Inverting
 - Selectable Gain

- First order Band Pass
 - Non-inverting
 - Selectable Gain
 - Wide passband

 $f_{CL} = \frac{1}{2\pi R^2 C^2}$

 $f_{CU} = \frac{1}{2\pi R 1 C 1}$

 $A = 1 + \frac{R_F}{R_I}$

A (<u>fch</u>

 $\sqrt{1 + \left(\frac{f}{f_{CH}}\right)^2} \sqrt{1 + \left(\frac{f}{f_{CL}}\right)^2}$

- First order Band Pass
 - Inverting
 - Selectable Gain
 - Narrower passbands possible

* At high frequencies, the OpAmp internal capacitance limits the rolloff

- First order Band Stop
 - Non-inverting
 - Selectable Gain

$$f_{CL} = \frac{1}{2\pi R 1 C 1}$$

$$f_{CU} = \frac{1}{2\pi R 2 C 2}$$

$$A = -\frac{R_F}{R_I}$$

$$A_v^* = \frac{A\left(\frac{f}{f_{CH}}\right)}{\sqrt{1 + \left(\frac{f}{f_{CH}}\right)^2}} \frac{1}{\sqrt{1 + \left(\frac{f}{f_{CL}}\right)^2}}$$

2

© tj

* At high frequencies, the OpAmp internal capacitance limits the rolloff

Generalized Second Order Configuration

Generalized Second Order Configuration

Can be generalized to the form

$$H_{s} = \frac{a_{2}s^{2} + a_{1}s + a_{0}}{s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}}$$

- ω characteristic frequency
- Q quality factor

 $a_o \neq 0$ low pass $a_1 \neq 0$ band pass $a_2 \neq 0$ high pass

Generalized Second Order Configuration

$$H_{s} = \frac{a_{2}s^{2} + a_{1}s + a_{0}}{s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}}$$

- Variations in a, ω, and Q generate different passband characteristics
- a, ω, and Q are set by the values of Z₁, Z₂, Z₃, Z₄

- Butterworth Maximally Flat
 - Low Pass

$$H_{s} = \frac{a_{2}s^{2} + a_{1}s + a_{0}}{s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}}$$

For the Butterworth response $R_1 = R_2$ $C_3 = 2C_4$ $\omega_{3dB} = \frac{1}{\sqrt{2RC_4}}$

© ti

19

- Butterworth Maximally Flat
 - High Pass

$$H_{s} = \frac{a_{2}s^{2} + a_{1}s + a_{0}}{s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}}$$

For the Butterworth response $R_4 = 2R_3$ $C_1 = C_2$ $\omega_{3dB} = \frac{1}{\sqrt{2}R_3C}$

- Chebyshev Enhanced initial rolloff
 - Low Pass

$$H_{s} = \frac{a_{2}s^{2} + a_{1}s + a_{0}}{s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}}$$

21

- Second order filters
 - Non-inverting
 - Selectable gain
 - High frequencies → unity gain

- Second order filters
 - 2nd order filters with gain exhibit a more complex response than 2nd order passive filters
 - Q quality factor = gain at the 3db point
 - ζ zeta damping factor = 1/(2Q)
 - ω_0 characteristic frequency where things change in the frequency response

2nd order LPF

$$A_{v} = A \times \left| \frac{\omega_{0}^{2}}{-\omega^{2} + j\left(\frac{\omega_{0}}{Q}\right)\omega + \omega_{0}^{2}} \right| = A \times \frac{\omega_{0}^{2}}{\sqrt{(\omega_{0}^{2} - \omega^{2})^{2} + \left(\frac{\omega_{0}}{Q} \times \omega\right)^{2}}}$$
$$Q = \frac{1}{A - 3}$$
$$\omega_{c} = \omega_{0} \sqrt{1 - \frac{1}{2Q^{2}} + \sqrt{1 + \left(1 - \frac{1}{2Q^{2}}\right)^{2}}}$$
$$A = 3 - \frac{1}{Q}$$

- Second order filters
 - 2nd order filters with gain exhibit a more complex response than 2nd order passive filters

2nd order LPF

$$A_{\nu} = A \times \frac{\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + \left(\frac{\omega_0}{Q} \times \omega\right)^2}}$$

$$\omega_{C} = \omega_{0} \left| 1 - \frac{1}{2Q^{2}} + \sqrt{1 + \left(1 - \frac{1}{2Q^{2}}\right)^{2}} \right|$$

$$\omega = 0, \qquad A_{\nu} = A$$
$$\omega = \omega_0, \qquad A_{\nu} = A \times Q$$
$$\omega \gg \omega_0, \qquad A_{\nu} = A \times \frac{\omega_0^2}{\omega^2} = 0$$

$$Q = \frac{1}{\sqrt{2}}, \qquad \omega_C = \omega_0, \qquad A = 1.58$$

- Second order filters
 - 2nd order filters with gain exhibit a more complex response than 2nd order passive filters
 - Over damped:

Filter response is smooth and slow Transient response is smooth and slow

- A < 1.586 $Q < \frac{1}{\sqrt{2}}$ $\zeta > 0.707$
- Critically damped: Filter response matches the passive filter A = 1.586 $Q = \frac{1}{\sqrt{2}}$ $\zeta = 0.707$
- Under damped:

Filter response is peaked Transient response "rings"

A > 1.586 $Q > \frac{1}{\sqrt{2}}$ $\zeta < 0.707$

Filter circuit oscillates independently

Unstable:

 $A \to 3$ $Q = \infty$ $\zeta \to 0$

- Order > 2 active Filters
 - Cascade 1st and 2nd order stages
 - Remember, gain can be tricky in 2nd order stages
 - Move gain to 1st order stages where possible
 - Computer programs and calculators available

- Chebyshev 5th order HP
 - High Pass

