Rectification

Last updated $1 / 18 / 24$

Transformers

- Transformers
- Basics

Concept

AC voltage on the Primary coil creates a magnetic field (concentrated by the core)

The magnetic field in the core creates a voltage on the secondary coil

Implementation

Transformers

- Characteristic Equation

Schematic

Characteristic Equation

$\frac{v_{P}}{v_{S}}=\frac{i_{S}}{i_{P}}=\frac{N_{P}}{N_{S}} \quad$ Transformer turns ratio

Transformers

- Example 1
- The cube shaped transformer you plug into a wall socket is sometimes called a "wall wart"
- v_{p} is approximately 120 v rms

What transformer turns ratio would be required to generate an 18 v rms secondary voltage

$$
\frac{N_{1}}{N_{2}}=\frac{v_{P}}{v_{S}}=\frac{120 v \mathrm{rms}}{18 v \mathrm{rms}}=6.66
$$

Transformers

- Example 2

How much does the secondary voltage from the previous slide vary due to power line voltage variation

US power line voltage can vary from 114 v rms to 126 v rms (range A)

$$
\begin{aligned}
& v_{S}=\frac{N_{2}}{N_{1}} v_{P}=\frac{1}{6.66} v_{P} \\
& \text { @ } 114 \mathrm{v} \mathrm{rms}, \mathrm{v}_{\mathrm{s}}=17.1 \mathrm{v} \mathrm{rms} \\
& \text { @ } 126 \mathrm{v} \mathrm{rms}, \mathrm{v}_{\mathrm{s}}=18.8 \mathrm{v} \mathrm{rms}
\end{aligned}
$$

Note: this is $+/-5 \%$

Transformers

- Center Tap

- 1 primary coil, 2 secondary coils

Half-Wave Rectifier

- Half Wave Rectifier
- Basic Implementation

Half-Wave Rectifier

- Simulation

$$
v_{S}= \pm 3 \mathrm{~V}
$$

Half-Wave Rectifier

- Design Considerations

Reversed biased region
$v_{D} \max =-v_{S}$ peak
\rightarrow breakdown requirement

Forward biased region
$\mathrm{i}_{\mathrm{D}} \max =\left(\mathrm{v}_{\mathrm{S}}\right.$ peak $\left.-\mathrm{v}_{\mathrm{D}}\right) / R$
\rightarrow current requirement

Half-Wave Rectifier

- Design Example
- 120 v rms primary voltage
- Transformer turns ratio: 12
- Load resistance: $1 \mathrm{~K} \Omega$

-What are the diode requirements?

```
Breakdown:
    120v rms, 12 turns ratio }->\mp@subsup{v}{\textrm{s}}{}=10\textrm{v}r\textrm{rms
    10v rms }->\mathrm{ vspeak = 14.14v
Current:
(14.14v- v
typical v v is 0.6v }->13.54\textrm{ma
guard band the design:
\(v_{F} \approx 0.6 \mathrm{v}\)
\(\mathrm{V}_{\text {breakdown }}>20 \mathrm{v}(14 \mathrm{v} \mathrm{rms})\)
\(I_{\max }>20 \mathrm{ma}\)
```


Full-Wave Rectifier

- Full-Wave Rectifier
- Basic Implementation

Full-Wave Rectifier

- Simulation

Full-Wave Rectifier

- Bridge Rectifier

Full-Wave Rectifier

- Bridge Rectifier

四 $\frac{V(3)}{\square} \underline{V(1) V(6)}$

Selected Trace:V(3)

Selected Diagram:Transient

Full-Wave Rectifier

- Bridge Rectifier

Reversed biased region D1,D2
$v_{D} \max =-v_{s}$ peak $/ 2$
\rightarrow breakdown requirement

Forward biased region D1, D2
$i_{D} \max =\left(v_{\text {S }}\right.$ peak $\left.-2 v_{D}\right) / R$
\rightarrow current requirement

Full-Wave Rectifier

- Comparison

Lower voltage drop - $1 \mathrm{v}_{\mathrm{D}}$ Fewer active components - 2 diodes More complex transformer - \$\$
transformer - \$16
diodes - \$0.10

Higher voltage drop - $2 \mathrm{v}_{\mathrm{D}}$
More active components - 4 diodes Less complex transformer - \$
transformer - \$10
diodes - $\$ 0.20$

- Real world

${ }^{\text {mmuxdiocos.com }}$

$\left.\left.\prod_{N} \bigoplus_{A}\right]_{N}\right]_{E} \Delta_{T} \square_{c}$
Power Transformer Chassis Mount: Single Secondary

F-13X

Eloctrical Specifications (@25C)

1. Maximum Powe

co cty
 primary and sesoondiar
wndings and the core.

A	B	C	D
1.375	2.375	1.375	2.00

Schematic:

$$
\underset{\frac{a x}{\operatorname{ax}}}{\substack{\text { ax }}} \| \xi_{\text {oex }}^{\text {aex }}
$$

Primary- Black to Buak
Secondaray: Green 10 G Green

$\left\lvert\, \begin{aligned} & \text { 460 Harley Knox Blvd } \\ & \text { Pemis. Califonial } \\ & \\ & 92571\end{aligned}\right.$
Publish Date: April 18, 2019
\qquad

