Last updated 2/1/24

- DC Power
 - Essentially all digital systems and most analog systems run on DC power internally
 - DC power solutions vary over time
 - Batteries run down
 - AC power solutions need to be converted to DC

→ Voltage regulation

Add a simple Low Pass Filter to a rectifier

Filter time constant: $\tau = R_L C_F$

Filter Decay Equation: $v_0 = vinit_{ial}e^{-t/\tau}$

Add a simple Low Pass Filter to a rectifier

Filter time constant: $\tau = R_L C_F$

Filter Decay Equation: $v_0 = v_{initial} e^{-t/\tau}$

© tj

- Add a simple Low Pass Filter to a rectifier
 - Resulting output is a pseudo-DC signal

Filter time constant: $\tau = R_L C_F$

Filter Decay Equation: $v_0 = v_{initial} e^{-t/\tau}$

ELE 4142

Signal Analysis

Filter time constant: $\tau = R_L C_F$

Filter Decay Equation: $v_0 = v_{initial} e^{-t/\tau}$

$$v_{pk} = v_{Srms} + 1.414$$

$$v_{initial} \approx v_{pk} - 2v_{D}$$

$$t \leq T/2$$

$$e^{-t/\tau} \geq e^{-T/2\tau} = e^{-T/2RC}$$

$$v_{0} = vini_{tial}e^{-T/2RC}$$

$$v_{ripple} = v_{initial} - vin_{itial}e^{-T/2RC}$$

* 1 / 1 /

$$v_{ripple} = v_{initial} (1 - e^{-T/_{2RC}})$$

6

© tj

- Design Example 1
 - Design a bridge rectifier circuit to provide a peak output voltage of 15v and 250mv of ripple.
 - Assume nominal line voltage, simple diodes, $R_L = 1K\Omega$

Transformer Design

15v peak out w/ 2 $v_D \rightarrow 16.4v$ peak v_s 16.4v peak $v_s \rightarrow 11.6v$ rms for v_s 11.6v rms with 120v rms input $\rightarrow N = 10.35$

Filter Design

 $T = 1/60Hz = 16.666ms, R_{L} = 1K\Omega$ $v_{ripple} = v_{initial} (1 - e^{-T/_{2RC}})$ $250mv = 15v(1 - e^{-16.666ms/_{2*1K\Omega*C}})$ $C_{F} = 496uF$

© ti

- Design Example 1
 - Design a bridge rectifier circuit to provide a peak output voltage of 15v and 250mv of ripple.
 - Assume nominal line voltage, simple diodes, $R_L = 1K\Omega$

v_{ripple} = 236mv

- Design Example 2
 - Design a bridge rectifier circuit to provide a minimum output voltage of 12.5v and < 500mv of ripple.
 - Assume nominal line voltage, simple diodes, $R_L = 1K\Omega$

Transformer Design 13v peak out w/ 2 $v_D \rightarrow 14.4v$ peak v_s 14.4v peak $v_s \rightarrow 10.1v$ rms for v_s Closest common transformer size would be 12v rms 12v rms $\rightarrow 15.57v$ peak $v_s \rightarrow 14.17v$ peak out Filter Design

```
T = 1/60Hz = 16.666ms, R<sub>L</sub> = 1KΩ

v_{ripple} = v_{initial}(1 - e^{-T/_{2RC}})

500mv = 14.17v(1 - e^{-16.666ms/_{2*1KΩ*C}})

C<sub>F</sub> = 231uF

Closest common (larger) capacitor size is 330uF

v_{ripple} = 353mv
```

Final Design

12v rms transformer Simple bridge rectifier 330uF filter capacitor

v_o = 13.83v to 14.17v (353mv ripple)

- Design Example 2
 - Design a bridge rectifier circuit to provide a minimum output voltage of 12.5v and < 500mv of ripple.
 - Assume nominal line voltage, simple diodes, $R_L = 1K\Omega$

 $v_{Omin} = 15.4v$ $v_{ripple} = 365mv$

Why different from the predicted results?

10

- DC Power
 - Essentially all digital systems run on DC power internally
 - I can't think of any that run on AC but all is a hard statement
 - Even DC power solutions vary over time
 - Batteries run down
 - AC power solutions need to be converted to DC

 \rightarrow Voltage regulation

- Precision Voltage Regulation
 - Super simple precision voltage regulator

- DC Power Voltage Regulation
 - Parametrics
 - Output Voltage
 - Fixed for a given regulator
 - Line Regulation
 - Variation in the output voltage (%)
 - Input Voltage
 - Maximum input voltage level
 - Output Current
 - Max current to load
 - Dropout Voltage
 - Minimum input voltage level ABOVE the specified output voltage

Table 7. Electrical characteristics of LD1117#50						
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
vo	Output voltage	V _{in} = 7 V, I _O = 10 mA, T _J = 25 °C	4.95	5	5.05	v
Vo	Output voltage	I ₀ = 0 to 800 mA, V _{in} = 6.5 to 15 V	4.9		5.1	v
ΔVo	Line regulation	V _{in} = 6.5 to 15 V, I _O = 0 mA		1	10	mV
ΔVo	Load regulation	V _{in} = 6.5 V, I _O = 0 to 800 mA		1	15	mV
ΔVo	Temperature stability			0.5		\$
ΔVo	Long term stability	1000 hrs, T _J = 125 °C		0.3		\$
Vin	Operating input voltage	l _o = 100 mA			15	v
ч	Quiescent current	V _{in} ≤ 15 V		5	10	mA
ю	Output current	V _{in} = 10 V, T _J = 25 °C	800	950	1300	mA
eN	Output noise voltage	B = 10 Hz to 10 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	I _O = 40 mA, f = 120 Hz, T _J = 25 °C V _{In} = 8 V, V _{rippla} = 1 V _{PP}	60	75		đB
		l _o = 100 mA		1	1.1	
Vd	Dropout voltage	l ₀ = 500 mA		1.05	1.15	v
		l ₀ = 800 mA		1.10	1.2	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	96/W