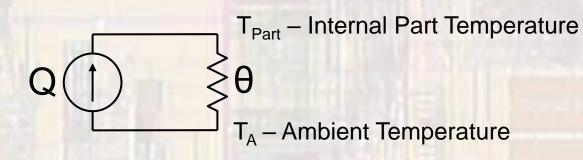

Last updated 1/10/24

- Semiconductor Thermal Constants
 - Semiconductor junctions start to fail at around 150°C
 - Two primary thermal paths
 - Junction to Case (package) θ_{JC} , Case to Ambient (outside) θ_{CA}


- Semiconductor Thermal Constants
 - θ_{JC} thermal resistance from the junction to the case
 - θ_{CA} thermal resistance from the case to the ambient
 - Since most users do not care about the intermediate temperature
 - Often combined to be θ_{JA}
 - e.g. $\theta_{JC} = 60^{\circ}C/W$
 - $\theta_{CA} = 180^{\circ}C/W$
 - $\rightarrow \theta_{JA} = 240^{\circ}C/W$

- Power Dissipation
 - Power dissipated in a part that is not provided to some load is converted into heat
 - Electrical Analogy

 Thermal
 Temp (ΔT)
 Heat Flow (Q)
 Thermal Resistance (θ)

 Electrical Voltage

 (°C)
 (W)
 Thermal Resistance (θ)
 Electrical Resistance
 (°C/W)
 - Where Q corresponds to electrical power wasted (turned to heat)

Power Dissipation

 $P_{D} \bigoplus_{JA} H_{A} - Ambient Temperature$

A part has a $\theta_{JA} = 50^{\circ}$ C/W

It dissipates 1W of wasted power The ambient temperature is 27°C

Its junction temperature will be:

 $T_{J} = (Pd \times \theta_{JA}) + T_{A} = (1W \times 50^{\circ}C/W) + 27^{\circ}C = 77^{\circ}C$

Power Dissipation

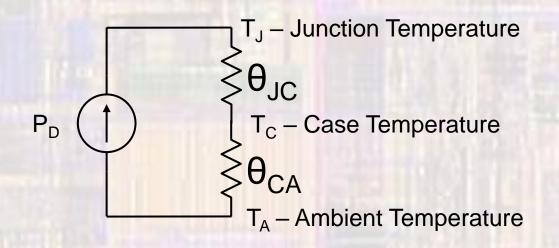
 $P_{D} \bigoplus_{T_{A}} - Ambient Temperature$

A regulator has a $\theta_{JA} = 240^{\circ}$ C/W and a $T_{JMax} = 150^{\circ}$ C

It dissipates 2W with 50% efficiency \rightarrow 1W of wasted power The ambient temperature is 27°C

Its junction temperature will be:

 $T_J = (P_D \times \theta_{JA}) + T_A = (1W \times 240^{\circ}C/W) + 27^{\circ}C = 267^{\circ}C$


- Power Dissipation
 - We can't impact the θ_{JC} but we can impact θ_{CA}
 - Attach a heat sink
 - Heat Sink
 - By increasing the air-heat interface area, heat sinks allow more heat to be dissipated faster
 - Reduce the effective thermal resistance θ_{CA}

 $\theta_{CA} = 15 \text{ °C/W}$

Power Dissipation

A regulator has: $\theta_{JA} = 240^{\circ}$ C/W ($\theta_{JC} = 60^{\circ}$ C/W, $\theta_{CA} = 180^{\circ}$ C/W) and $T_{JMax} = 150^{\circ}$ C A heat sink is attached with a new $\theta_{CA} = 15^{\circ}$ C/W

It dissipates 2W with 50% efficiency \rightarrow 1W of wasted power The ambient temperature is 27°C

Its junction temperature will be:

 $T_J = (P_D \times (\theta_{JC} + \theta_{CA})) + T_A = (1W \times (60^{\circ}C/W + 15^{\circ}C/W) + 27^{\circ}C = 102^{\circ}C$