ELE 455/555 Spring 2016

Homework 1

Due 1/26

Beginning of Class

1 - create a full truth table for the following circuit - 10pts
(be sure to include all intermediate nodes)

2 - Create a transition table and determine the value of Q after each clock cycle

 - 10pts(Assume Q = 0 initially)

3 - Create a transition table and determine the value of OUT after each clock cycle - 10pts
(Assume both Qs $=0$ initially)

$\mathrm{K}=0$ on $2^{\text {nd }}$ clock edge

4 - Write the logic equation for the circuit below (in minimum SOP or POS form) - 10pts

5 - Determine the output values - 10pts
(show your work)

6 - Write each of the following numbers using the designated representation you must show your work - 10pts

77 (unsigned 8bit binary)
-77 (8 bit binary sign magnitude)
-77 (8 bit 2's complement)
-77 (hex)

77 (8 bit 2's complement)

7 - Write each of the numbers in the designated representation in base 10 you must show your work - 10pts

```
10010101 (BCD) -> decimal
11010111 (2's complement) }->\mathrm{ decimal
1 1 0 1 0 1 0 1 ~ ( s i g n / m a g ) ~ \rightarrow ~ d e c i m a l ~
3C (hex) }->\mathrm{ decimal
01010111 (2's complement) }->\mathrm{ decimal
```

8 - Write - 12.875 using standard floating point notation you must show your work - 10pts

9 - do the following using 8 bit 2's complement arithmetic you must show your work - 10pts

$$
\begin{aligned}
& 5+12= \\
& 15-8= \\
& 23-51= \\
& -5-15= \\
& -15+66=
\end{aligned}
$$

10 - do the following using 8 bit 2's complement arithmetic you must show your work - 10pts
$15 \times-9=$
$-6 x-12=$

