ELE 455/555 Spring 2016

Homework 2

Due 2/2

Beginning of Class

1. Logic Circuits - 10pts
a) Create a truth table for the following circuit: - 7pts

b) What is it's function? $-3 p t s$

2. MOS Transistors - 10pts

Given an n-channel silicon mosfet with $\mathrm{W}=0.2 \mu, \mathrm{~L}=45 \mathrm{~nm}, \mathrm{t}_{\mathrm{ox}}=40 \AA$, $\mu_{n}=500 \mathrm{~cm}^{2} / \mathrm{V}$-s and $\mathrm{V}_{\mathrm{t}}=0.6 \mathrm{v}$, determine I_{DS} for the following circuits:

3. Frequency - 10pts

Assuming a design optimized to match rise and fall times, how would you expect the maximum operating frequency to vary with supply voltage? (use the simplified equations from the class 3 notes - show your work)

Why do operating voltages keep dropping?
4. Power - 10pts

Processor A can execute 1 instruction per clock cycle @2V, Processor A's max operating frequency is 200 MHz @1V, Processor A's max operating frequency is 100 MHz If you need to execute 50 M instructions per second
a) Which voltage/frequency combination should you operate at to minimize active power?
b) Is there a second operating point with the same power performance? What is it?
5. Pipeline - 10pts

The 4 stages of a data path have the following latencies
Stage 1: 200ps, Stage 2: 400ps, Stage 3: 300ps, Stage 4: 100ps
Pipelining these stages adds 20% to the latency of each stage
a) Should you create a pipeline or not? (show your work)
b) At what latency penalty (\%) does your decision change? (show your work)

6 - Architecture Analysis - 10pts

Identify the specific processor in your computer (or one in the laptop or lab computer
A) What is the processor
B) Draw a very simple architectural diagram including CPU and Memory Hierarchy
C) How many pipeline stages does this processor have

7 - Fill in the memory values for the Processor Z assembly code below - 10pts start the code at memory location $0 \times 01 \mathrm{~A} 1$
(be sure to put the code in the proper format)

	ldz	R2
loop:	add	R0,R2
	dec	R1
	bnz	R1,loop2
	stz	R2
loop2:	bnz	R1,loop
	ldi	R2,12

8 - Reverse assemble the Processor Z code below - 10pts

(be sure to put the code in the proper format)

ADDRESS				DATA	
Hex				Hex	
0	0	0	0	A	D
0	0	0	1	2	1
0	0	0	2	F	6
0	0	0	3	4	1
0	0	0	4	6	0
0	0	0	5	0	9
0	0	0	6	F	F

9) Fill in the Processor Z Register model following the execution of this program snippit - 10pts
```
org $100A (next instruction starts at location 0x100A)
Idi R1,11
Idi R2,0x06
dec R2
bnz R2,loop
Idi R3,0x03
```

loop dec R1

Assuming 1 clock / instruction, how many clock cycles are used?

10 - Write Processor Z assembly code to subtract lownum from highnum where lownum is in memory location 0×0200 and highnum is in memory location $0 \times 0 \mathrm{C} 02$. The result should be stored in memory location $0 \times 0 \mathrm{CO}-10 \mathrm{pts}$
(you can assume highnum > lownum and lownum >0)

