ELE 455/555 Spring 2016

Homework 2

Due 2/2

Beginning of Class

1. Logic Circuits – 10pts

a) Create a truth table for the following circuit: - 7pts

b) What is it's function? – 3pts

2. MOS Transistors – 10pts

Given an n-channel silicon mosfet with W=0.2 μ , L=45nm, t_{ox}=40Å, μ_n =500cm²/V-s and V_t=0.6v, determine I_{DS} for the following circuits:

3. Frequency – 10pts

Assuming a design optimized to match rise and fall times, how would you expect the maximum operating frequency to vary with supply voltage? (use the simplified equations from the class 3 notes - show your work)

Why do operating voltages keep dropping?

4. Power – 10pts

Processor A can execute 1 instruction per clock cycle @2V, Processor A's max operating frequency is 200MHz @1V, Processor A's max operating frequency is 100MHz If you need to execute 50M instructions per second

a) Which voltage/frequency combination should you operate at to minimize active power?

b) Is there a second operating point with the same power performance? What is it?

5. Pipeline – 10pts

The 4 stages of a data path have the following latencies Stage 1: 200ps, Stage 2: 400ps, Stage 3: 300ps, Stage 4: 100ps Pipelining these stages adds 20% to the latency of each stage

a) Should you create a pipeline or not? (show your work)

b) At what latency penalty (%) does your decision change? (show your work)

6 – Architecture Analysis - 10pts

Identify the specific processor in your computer (or one in the laptop or lab computer

A) What is the processor

B) Draw a very simple architectural diagram including CPU and Memory Hierarchy

C) How many pipeline stages does this processor have

 7 – Fill in the memory values for the Processor Z assembly code below – 10pts start the code at memory location 0x01A1 (be sure to put the code in the proper format)

	ldz	R2
loop:	add	R0,R2
	dec	R1
	bnz	R1,loop2
	stz	R2
loop2:	bnz	R1,loop
	ldi	R2,12

ADDRESS					DATA	
	Hex				He	ex
0	1	А	1			
0	1	А	2			
0	1	А	3			
0	1	А	4			
0	1	А	5			
0	1	А	6			
0	1	А	7			
0	1	А	8			
0	1	А	9			
0	1	А	Α			

8 - Reverse assemble the Processor Z code below - 10 pts

(be sure to put the code in the proper format)

ADDRESS				DA	TA	
Hex				He	ex	
0	0	0	0		А	D
0	0	0	1		2	1
0	0	0	2		F	6
0	0	0	3		4	1
0	0	0	4		6	0
0	0	0	5		0	9
0	0	0	6		F	F

9) Fill in the Processor Z Register model following the execution of this program snippit – 10pts

org \$100A (next instruction starts at location 0x100A)

	ldi	R1,11
	ldi	R2,0x06
loop	dec	R1
	dec	R2
	bnz	R2,loop
	ldi	R3,0x03

Assuming 1 clock / instruction, how many clock cycles are used?

10 – Write Processor Z assembly code to subtract lownum from highnum where lownum is in memory location 0x0200 and highnum is in memory location 0x0C02. The result should be stored in memory location 0x0C04 - 10 pts

(you can assume highnum > lownum and lownum > 0)