ELE 455/555 Spring 2016

Homework 3

Due 2/9
Beginning of Class

1. Part Cost $-10 p t s$

Estimate the cost of a new processor given the following:

Wafer cost: \$2500
Raw wafer yield: 95\%
Defect density: 0.15defects/cm2
$\alpha=15, Y_{0}=1$
Package Cost: \$0.003/ball
Packaged part yield:99\%

Die size: 95 mm 2
Parametric yield: 99\%
Package: 32x32 ball BGA
Desired margin: 40\%
200mm wafer
Use default spacing etc for wafer estimator
2) Processor Performance-10pts

Calculate the execution time for each of the processors below

Processor	Clock Rate (GHz)	CPI	Instruction Count (Millions)
1	4	1.1	45
2	3.5	1	40
3	3	0.9	35
4	2.5	1	30

Execution Time (ms)

Which processor executes the fastest?

Multiprocessor Performance - Table MP

Multiprocessor performance is measured as a combination of computing time and inter-processor communication time. The following table indicates the benchmark times associated with several routines and routing time for a number of processors.

Number of Processors	Routine 1 (ms)	Routine 2 (ms)	Routine 3 (ms)	Routine 4 (ms)	Routine 5 (ms)	Routing Time (ms)
2	80	18	12	70	39	12
4	58	4	9	36	30	14
8	30	6	9	19	22	18
16	14	2	6	11	17	23
32	8	2	1	6	11	24
\# Instructions $($ millions $)$	144	27	16	72	35	-

3. Multiprocessor Performance Comparison - 10pts

Using table MP: Plot the execution time for these processor configurations Execution time (all 5 routines combined) vs \# of processors (1 curve)

If processors cost $\$ 0.10$ each and each ms of execution time costs $\$ 0.01$ each. What configuration minimizes the system cost.
4. Multiprocessor Performance Comparison - 10pts

Using table MP: Assume a 1 GHz clock
Plot the CPI for routines 1 and 4 for each of the processor configurations
CPI vs \# of processors - (2 curves- routines 1,4)
5. Performance Comparison - 10pts

Which of these laptops offers the best processor performance

1) Samsung - NP470R5E-K01UB
2) Toshiba - P55-A5312
3) HP - m6-k022dx
4) MIPS Assembly - 10pts

Convert the following C to MIPS assembly:

$$
A[5]=B[3]+A[5]
$$

Assume $\$$ s1 and $\$$ s2 hold the base address for A and B
7) MIPS Assembly - 10pts

Convert the following C to MIPS assembly:

$$
A[j+k]=B[j-k]
$$

Assume $\$$ s1 and $\$$ s2 hold the base address for A and B Assume $\$ \mathrm{~s} 3$ and $\$ \mathrm{~s} 4$ hold the values for j and k
8) MIPS Assembly - 10pts

Convert the following assembly to MIPS machine code:

$$
\begin{array}{ll}
\text { add } & \$ t 0, \$ \mathrm{~s} 6, \$ \mathrm{~s} 5 \\
\text { addi } & \$ \mathrm{t} 1, \$ \mathrm{~s} 3,-18
\end{array}
$$

9) MIPS Assembly - 10pts

Convert the following MIPS machine code to assembly:
0×15150002 // assume these 4 instructions are in order
0×22730001
0×01364820
0×00094840

10) MARS - 10pts

Download the MARS simulator (java app) and run the Fibonacci code. Add to the code a line that places the last 4 digits of your UID into S7 in hex format (e.g. UID $=12345678$, would appear as 0×00005678). Screen dump the completed simulation.

