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• Eight Great Ideas in Computer Architecture

• Design for Moore’s Law
• Integrated Circuit resources double every 18-24 months

• More gates, parallelism, function specific blocks

• Use Abstraction to Simplify Design
• Show only those details required to get the job done

• HW – transistor/gate/block/module level abstraction

• SW – subroutine/object/program level abstraction

• Make the Common Case Fast
• Make the things you do the most fast

• Manage the rare tasks

Overview

src: Patterson and Hennessy
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• Eight Great Ideas in Computer Architecture – cont’d

• Performance via Parallelism
• Some tasks (but not all) can be separated and done in parallel leading to 

overall reduction in “time”

• Performance via Pipelining
• Subset of parallelism

• Leverages a series of smaller tasks to accomplish a bigger goal

• Utilizes resources across several goals

• Performance via Prediction
• In some situations the “likely” next step is known

• By moving forward before you are sure – you can save time

• Requires the penalty for being wrong to not be too large

Overview
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• Eight Great Ideas in Computer Architecture – cont’d

• Hierarchy of Memories
• More memory is always desired

• Large = Slow

• Build a hierarchy of memory – fast but small  large and slow

• Dependability via Redundancy
• The underlying technology can fail

• Build in circuit level, device level and system level redundancy
• Extra row/columns in memories

• Parity checking

• 2 of 3 voting

Overview
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• Five Classic Components of a Computer System

• Input
• Keyboard, Mouse, Touch Screen, Camera, Sensors, Microphone

• Output
• Display, Speakers, Vibrator

• I/O
• External Memory, Transceivers (BT, WLAN, Cellular, …), 

• Memory
• Program and Data Storage

• ROM, RAM, dRAM, Flash

• Cache, Main, Removable

• Datapath
• Does the arithmetic and logical operations

• Control
• Manages the Datapath, Memory and I/O

Overview

The Datapath + Control is 
what we call a Processor or 
CPU (Central Processing Unit)
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• Instruction Set Architecture (ISA)

• Defines the HW/SW interface

• Allows low level SW to run on multiple versions of HW (as long as 

they have the same ISA)

• Typically includes:
• List and format of Instructions

• Register definitions

• I/O definitions, locations and operation

• ARM7, MIPS, AVR, HSC12, IA-64,…

Overview
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• Instruction Set Architecture (ISA)

• Accumulator
• oldest version (not used anymore – but the term will show up 

occasionally

• All arithmetic and logic operations are done with a single register – the 

accumulator

• Stack
• Became popular in the 60’s and 70’s – not used anymore

• All arithmetic and logic operations were done using data push’d/pop’d on 

a stack

• Memory – Memory
• Also not used anymore

• All arithmetic and logic operations were done directly to memory (slow)

Overview



8 © tjELE 455/555– Spring 2016

Performance

• Instruction Set Architecture (ISA)

• Register – Memory
• Fixed set of registers added to the Datapath

• Arithmetic and logic operations between registers and between registers 

and memory

• HC11/HSC12, Intel 80386, AMD64

• Register – Register
• Also called Load-Store

• Fixed set of registers added to the Datapath

• Arithmetic and logic operations between registers 

• Only memory operations are Load and Store (to/from registers)

• ARM, MIPS, Intel IA-64

Overview
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• Processor Cost Overview
• Key Components building to part cost

• Wafer Cost
• 300mm wafers range from $5000/wafer (early) down to $1200/wafer (mature)

• Cost reductions associated with process maturity

• Wafer Yield = number of wafers that make it through the process with working 

transistors

• Die Cost
• Based on the number of full die that can fit on a wafer

• Good Die Cost
• Based on the number of die that are fully functional (may include redundancy)

• Packaged Part Cost
• Add the cost of package and packaging process

• Good Packaged Part Cost
• Based on the number of fully functional packaged parts (may include 

redundancy)

• Margin
• Additional $ to cover R&D, facilities, … AND profit

Cost
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• Processor Cost Overview

• Wafer Cost
• 45nm, 300mm wafers ~ $2000/wafer

• Typical “lot” of 25 wafers

• Typical wafer yield of 95%
• Losses are a combination of  single wafers and whole lots

• Die Cost
• # of full die that will fit on a wafer

• Various approaches to maximize die count

• Die Cost = Wafer Cost / # of Die

Cost
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• Processor Cost Overview

Cost
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• Processor Cost Overview
• Good Die Cost

• Based on the number of die that are fully functional

• 2 primary yield components 
• Parametric Yield

• Process Yield

• Parametric Yield
• Parts that fail to meet a performance measure

• Typically max frequency or current drain

• Can be mitigated by binning (have a fast version of the part and a slow version)

• Typically 95% on digital parts

• Process Yield
• Dominated by defects in the manufacturing process

• 𝑌 = 𝑌𝑜(1 +
𝐷0𝐴

𝛼
)−𝛼 NB - negative binomial model

• Y0 – portion of area subject to defects (0.8-0.95)

• D0 – defect density (100defects/cm2 (early) – 0.15defects/cm2(mature))

• A - die area (20mm2 – 400mm2) 

• α - cluster factor (10 – 20)

Cost
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• Processor Cost Overview

• Packaged Part Cost
• Add the cost of package and packaging process

• $0.20 for small simple packages

• $2 - $4 for complex BGAs

• $1 for POP

• Good Packaged Part Cost
• Based on the number of fully functional packaged parts 

• Package yield is typically 95% - 99+%

• Margin
• Additional $ to cover R&D, facilities, … AND profit

• 20% for mature products

• 50% for new products

Cost
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• Processor Cost Example
• Arm Cortex A9

• 32kB I/D Cache

• 26M transistors

• 500mW @ 2GHz

• 5mm2 in 45nm process technology

• Apple A5
• Dual - Arm Cortex A9s

• 45nm Samsung Process

• Die size = 122mm2

• 1300 pin POP - BGA

• Samsung 45nm process
• 300mm wafers

• D0 = 0.25 defects / cm2

• α= 10

• Y0A5 = 0.95

Cost



15 © tjELE 455/555– Spring 2016

Performance

• Processor Cost Example
• Wafer Cost

• 300mm, 45nm   $2000 / wafer

• Wafer yield – 95%  $2105 / wafer

• Die Cost
• 122mm2  491 die/wafer   $4.29 / die

• Good Die Cost

• 𝑌 = 𝑌𝑜(1 +
𝐷0𝐴

𝛼
)−𝛼 = 0.95(1 +

(0.25 𝑑𝑒𝑓𝑒𝑐𝑡𝑠/𝑐𝑚2)(122𝑚𝑚2 ×(
1𝑐𝑚

10𝑚𝑚
)2

10
)−10 = 0.703 

• Defect driven die cost = $4.29/die / 0.703 = $6.10 / die

• Parametric yield – 0.98  $6.22 / die

• Packaged Part Cost
• 1300 pin – POP-BGA = $3   9.22 / part

Cost
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• Processor Cost Example

• Good Packaged Part Cost
• 98% yield  9.41 / part

• Margin

• If this was not an Apple design
• Margin = 50%  Part cost = $18.82

• Apple can cover the margin costs at the final product level
•  Part Cost = $9.41

• Gut feel cost before margin = $6.50

Cost
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• What do we mean by Performance

• Two primary performance parameters

• Speed
• the following discussion focuses on speed

• Power
• For mobile devices power is critical

• want your laptop to last 5-8 hours

• need your cell phone to last all day

• want your mp3 player to last all week

• want your e-reader to last a month

• For Servers
• cooling can be a significant expense for server farms

• cooling is an issue for individual server “closets”

Analytics
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• Two primary speed measurements

• Execution Time

• How long it takes the processor to complete a task

• Most familiar parameter to most of us
• boot time

• time to update the calculations on a large spreadsheet

• time to read/write a file to disk

• games – video updates and controller response time

• In many cases the individual tasks are completed so fast we no longer 

perceive a delay
• curser updates

• directory traversal

Analytics
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• Two primary speed measurements

• Throughput (bandwidth)

• How many things can be completed in a fixed amount of time

• Differentiated from execution time when –

• Tasks can be performed in parallel

• Portions of a task are dependent on outside resources

• A processor that can jump to the next task while waiting on a read from disk 

will have higher throughput than one that must stall during the wait

• Both take the same execution time to perform the task requiring the read but 

the first will also accomplish additional tasks during the same time.

Analytics
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• Two primary speed measurements

• Improving (decreasing) execution time
• Generally improves throughput

• Each parallel or subtask completes faster

• Exception: when there are not enough tasks to perform to fill the time
• hurry-up and wait

• Improving (increasing) throughput
• Typically does not improve execution time

• No one task completes any faster

• Exception: when there are more tasks than can be completed in the 

allotted time queues will form
• Assuming queue time is included in the execution time, improving throughput 

will improve execution time 

Analytics
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• Theoretical CPI   or    IPC

• CPI – Clocks per Instruction
• Number of clocks required to execute a single instruction

• Varies by instruction

• Varies by ISA

• HCS12:  1to 4 clocks per instruction for most instructions

• AVR:   1 clock per instruction for most instructions

• Cortex A8:  0.5 clocks per instruction (dual issue)

• Intel Core I7:  0.25 clocks per instruction (quad issue)

• When the CPI gets below 1.0 – start to talk about IPC
• Instructions per Clock

• Cortex A8:   IPC=2

• Intel Core I7:   IPC=4

Analytics
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• Practical CPI   or    IPC

• CPI – Clocks per Instruction
• Number of clocks in a program or program segment divided by the 

number of instructions executed

• Varies from theoretical
• Cache misses

• Instruction distribution

• Branch prediction errors

• Impacted by
• Architecture

• Program

• Compiler

• Memory – hierarchy, size, speed

Analytics
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• Basic Calculations

𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 𝑒𝑥𝑒𝑐𝑢𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =
𝐶𝑃𝑈 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 (𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑜𝑟 𝑝𝑟𝑜𝑔𝑟𝑎𝑚)

𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒

Example 1: Task A requires 10,000 clock cycles on the ARM8 processor.

How long will this task take using an 800MHz clock?

𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 =
10,000 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

800 × 106  𝑐𝑦𝑐𝑙𝑒𝑠
𝑠

= 12.5µ𝑠

Example 2: Task B takes 2us when running on your 2GHz laptop.

You have the ability to modify the clock rate on your laptop.

What clock rate should you use to achieve a 1.5us execution time?

𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠 = 2𝐸9
𝑐𝑦𝑐𝑙𝑒𝑠

𝑠
× 2µ𝑠 = 4000 𝑐𝑙𝑜𝑐𝑘𝑠

𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒 =
4000 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

1.5µ𝑠
= 2.666 𝐺𝐻𝑧

Analytics
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• Basic Calculations

𝐶𝑃𝑈 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 = Instructions for task × 𝐶𝑃𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒

Example: A program requires 10,000 instructions on the ARM8 processor.

Assuming a CPIave = 1.2, how many clock cycles will this program take?

𝐶𝑃𝑈 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 = 10,000 instructions × 1.2  𝑐𝑙𝑜𝑐𝑘𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 12𝐾 𝑐𝑙𝑜𝑐𝑘𝑠

Analytics
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• Basic Calculations

𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 =
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 × 𝐶𝑃𝐼

𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒

Example: Program A requires 10,000 instructions using the ARM8 processor at 

1.5GHz and a CPI =1.2.

How long will it take this program to run?

𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 =
10,000 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 × 1.2  𝑐𝑙𝑜𝑐𝑘𝑠

𝑖𝑛𝑠𝑡

1.5 × 109  𝑐𝑙𝑜𝑐𝑘𝑠
𝑠

= 8µ𝑠

Analytics
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• Basic Calculations

• Amdahl’s Law
• The maximum expected improvement to an overall system when only 

part of the system is improved

𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡
+ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑

Example: Cache misses represent 20% of the overall execution time of your program. 

You have developed a new cache that cuts the miss penalty in half.

How much will your program speed up?

𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 𝑛𝑒𝑤 =
0.2𝑌𝑠

2
+ 0.8𝑌𝑠 = 0.9𝑌𝑠 , Y = current CPU time

speed up = 10%

Analytics
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• Basic Calculations

• MIPS
• Measure of performance 

• Millions of Instructions / sec

• Can only be used to compare processors of a common architecture
• Different instructions  different # of instructions

• Different CPIs  different clocks / instruction  different times

• Can only be used to compare processors using the same program
• Different programs on the same computer will lead to different MIPS 

measurements

Analytics
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• Benchmarks

• Groups of programs designed to:
• Exercise the various components of the processor

• Emulate software representative of a more random application

• Operate at the program level 
• Can be used across various processor architectures

• Account for clock rates, memory compliments, accelerators

• Can be manipulated
• Compilers can target code to the benchmark, making a given 

implementation appear faster than it would normally be.

Benchmarks
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• Dhrystone
• Dhrystone

• Number of iterations of a loop of the benchmark code per second

• Dhrystone VAX MIPs (Dhrystone MIPS or DMIPS)
• Compare the performance of a processor against the performance of a 

reference machine

• The benchmark is calculated by measuring the number of Dhrystones 

per second for the system, and then dividing that figure by the number of 

Dhrystones per second achieved by the reference machine (VAX11/780)

• VAX 11/780 could execute 1750 Dhrystones/s
• 1DMIP = 1750 Dhrystones/s

• So “100 DMIPS" means “100 Dhrystone VAX MIPS", which means 

100 times faster than a VAX 11/780

• Measuring DMIPS/MHz removes clock frequency confusion

Benchmarks
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• Dhrystone
• Limitations

• No floating point operations

• Easy to optimize compilers for the test

Benchmarks

Dhrystone GIPS

DMIPS x 1000

Notice – there is no 
clock frequency 
normalization here
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• SPEC
• Standard Performance Evaluation Corporation

• SPEC CPU2006
• relatively recent suite of programs (includes java)

• CINT2006 – measure integer performance

• CFP2006 – measures floating point performance

• SPEC defines a baseline runtime for each component of the 

benchmark 

• The ratio of reference time / run time = SPECmarkxyz

• The geometric mean of each of full set of tests is calculated
• SPECint or SPECfp

Benchmarks
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• SPEC
• More common in larger processors

Benchmarks
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• COREMARK
• Embedded Microprocessor Benchmark Consortium (EEMBC)

• System focused benchmarks
• Android, browser, TCP/IP

• Processor focused benchmarks
• COREMARK

• variations for automotive, entertainment, low power, multiprocessors

• “Coremark” is a measure of the number of iterations of the 

benchmark code loop per second

Benchmarks



34 © tjELE 455/555– Spring 2016

Performance

• COREMARK

Benchmarks
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• PassMark

• Integer Math Test
• The Integer Math Test aims to measure how fast the CPU can perform mathematical 

integer operations…provides a good indication of 'raw' CPU throughput.

• Compression Test
• The Compression Test measures the speed that the CPU can compress blocks of data 

into smaller blocks of data without losing any of the original data… a function that is very 

common in software applications. 

• Prime Number Test
• The Prime Number Test aims to test how fast the CPU can search for Prime numbers 

…this algorithm uses loops and CPU operations that are common in computer software.

• Encryption Test
• The Encryption Test encrypts blocks of random data using several different encryption 

techniques…also uses a large amount of binary data manipulation and CPU 

mathematical functions like 'to the power of'. 

• Floating Point Math Test
• The Floating Point Math Test performs the same operations as the Integer Math Test 

however with floating point numbers…these kinds of numbers are handled quite 

differently in the CPU compared to Integer numbers as well as being quite commonly 

used.

• Multimedia Instructions
• The Multimedia Instructions measures the SSE capabilities of a CPU… enable blocks 

of data to be processed at higher speeds. 
• SSE stands for Streaming SIMD extensions.

• String Sorting Test
• The String Sorting Test uses the qSort algorithm to see how fast the CPU can sort 

strings. 

• Physics Test
• The Physics Test uses the Tokamak Physics Engine to perform a benchmark of how 

fast the CPU can calculate the physics interactions of several hundred objects colliding. 

• Single Core Test
• The single core test only uses one CPU core and rates the computers performance 

under these conditions…many applications still only use one core so this is an important 

metric, 

Benchmarks
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• Caveats

• Most benchmarks measure a combination of CPU/system and 

compiler performance

• Significant results variation depending on cache size
• If the benchmark fits in the cache  better results

• All benchmarks simulate a fixed amount of code and situations
• Most processors are subject to wide variations in code

Benchmarks


