
ELE 455/555

Computer System Engineering

Section 2 – The Processor

Class 2 – Simple Data Path

2 © tjELE 455/555 – Spring 2016

Simple Data Path

• 5 Stages of Instruction Execution

• Fetch (IF)

• Decode / Register Access (ID)

• Execute (EX)

• Memory Access (MEM)

• Write Back (WB)

• Everything is asynchronous except for the PC

• PC is a synchronous register
• Positive edge triggered

• Synchronous reset

Overview

3 © tjELE 455/555 – Spring 2016

Simple Data Path

• Instruction Fetch

• Clock the PC

• New address is provided to the memory

• Memory provides instruction to its output

• Next address is provided to PC input
• Memory is Byte Addressed

• Instructions are 4 bytes wide

• increment by 4

• Adder is drawn as an ALU but actual implementation would be our

optimized adder block

Overview

4 © tjELE 455/555 – Spring 2016

Simple Data Path

• Decode / Register Access

• Decode
• For MIPS uses first and last 6 bits

of the instruction

• Register Access
• R format instructions use at most:

2 source registers and

1 destination register

• I format instructions use:

immediate: 1 src, 1 dest

load/store: 1 src or 1 dest

branch: 2 src

• J format instructions do not use

registers

Overview

Control
12

Instruction
Control
Signals

5 © tjELE 455/555 – Spring 2016

Simple Data Path

• Execute

• ALU executes all arithmetic and logical

instructions

• Inputs are Registers or Immediates
• Immediates are contained in the instruction

Overview

6 © tjELE 455/555 – Spring 2016

Simple Data Path

• Memory Access

• Load / Store Instructions

lw $t4,4($t0) # load $t4 from memory location ($t0)+4

• Address is calculated by adding the offset to the value in a register
• Use the ALU to add register value to the offset

• Since the offset is only 16 bits and is in 2’s compliment format
• Must sign extend the offset to 32 bits

Overview

Sign extension is trivial – Why?

7 © tjELE 455/555 – Spring 2016

Simple Data Path

• Write Back

• Write results or memory value back to a register

• Write data comes from ALU (result)

or

• Write data comes from data memory

Overview

8 © tjELE 455/555 – Spring 2016

Simple Data Path

• Missing Pieces – branches

• Read register operands

• Compare operands
• Use ALU, subtract and check Zero output

• Calculate target address
• Sign-extend displacement

• Shift left 2 places (word displacement)

• Add to PC + 4
• Already calculated by instruction fetch

Overview

shift left 2 is trivial – why?

What about the bits that shift off the end?

9 © tjELE 455/555 – Spring 2016

Simple Data Path

• Full Datapath

Overview

10 © tjELE 455/555 – Spring 2016

Simple Data Path

• ALU Control

• Basic ALU control mapping

• Slightly different MUX wiring than our previous version

Control

Operation invA negB ctl[1] ctl[0]

AND 0 0 0 0

OR 0 0 0 1

NOR 1 1 0 0

ADD 0 0 1 0

SUB 0 1 1 0

SLT 0 1 1 1

11 © tjELE 455/555 – Spring 2016

Simple Data Path

• ALU Control

• LW and SW use the ALU to add an offset to a register value

• BEQ uses the ALU to do a subtract

• R-type instructions can do any of the ALU functions

• Create an ALU opcode to generate the ALU control signals based

on the instruction being executed

Control

12 © tjELE 455/555 – Spring 2016

Simple Data Path

• ALU Control

• Creating the logic starts with a truth table

• Note there are many “don’t care” states

Control

13 © tjELE 455/555 – Spring 2016

Simple Data Path

• Datapath Control

• Control Signals are derived from instructions

Control

ALU

Operation

14 © tjELE 455/555 – Spring 2016

Simple Data Path

• Datapath Control

• Control Signals are derived from instructions

Control

15 © tjELE 455/555 – Spring 2016

Simple Data Path

• Datapath Control

Control

16 © tjELE 455/555 – Spring 2016

Simple Data Path

• Datapath Control – Rtype Instruction

Control

Instruction RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

R-format 1 0 0 1 0 0 0 1 0

17 © tjELE 455/555 – Spring 2016

Simple Data Path

• Datapath Control – LW Instruction

Control

Instruction RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

LW 0 1 1 1 1 0 0 0 0

18 © tjELE 455/555 – Spring 2016

Simple Data Path

• Datapath Control – BEQ

Control

Instruction RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

LW X 0 X 0 0 0 1 0 1

19 © tjELE 455/555 – Spring 2016

Simple Data Path

• Datapath Control – JUMP

Control

Instruction Jump RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

J 1 X X X 0 X 0 X X X

20 © tjELE 455/555 – Spring 2016

Simple Data Path

• Performance Issues

• Longest delay determines clock period
• Critical path: load instruction

• Instruction memory register file ALU data memory register file

• Not feasible to vary period for different instructions

• Violates design principle
• Making the common case fast

• We will improve performance by pipelining

Issues

After completion of the instruction “add $s3,$t3,$s7” indicate the value of each data bus.

Assume $t3=0xDCBA, $s7=0x4321, and the instruction was located at memory location

0x1220, use x for unknown

A B F

G

H

I

J

Bus/Wire Value (hex)

A

B

C

D

E

F

G

H

I

J
C

D E

A B F

G

H

I

J

Bus/Wire Value (hex)

A

B

C

D

E

F

G

H

I

J

0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0

add Rd,Rs,Rt

2 02 1 7 7 9 8

OP RS RT

add T3 S7

0x08 11 23

Funct

0x20

0x20

RD

S3

19

Shamt

0

C

D E

After completion of the instruction “add $s3,$t3,$s7” indicate the value of each data bus.

Assume $t3=0xDCBA, $s7=0x4321, and the instruction was located at memory location

0x1220, use x for unknown

A B F

G

H

I

J

Bus/Wire Value (hex)

A 1220

B B

C 17

D 13

E 13

F 0000 DCBA

G 0000 4321

H 0001 1FDB

I 0001 1FDB

J 1224
C

D E

0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0

add Rd,Rs,Rt

2 02 1 7 7 9 8

OP RS RT

add T3 S7

0x08 11 23

Funct

0x20

0x20

RD

S3

19

Shamt

0

After completion of the instruction “add $s3,$t3,$s7” indicate the value of each data bus.

Assume $t3=0xDCBA, $s7=0x4321, and the instruction was located at memory location

0x1220, use x for unknown

