
ELE 455/555

Computer System Engineering

Section 2 – The Processor

Class 3 – Pipelining

2 © tjELE 455/555 – Spring 2016

Pipelining

• Simple Datapath

Overview

3 © tjELE 455/555 – Spring 2016

Pipelining

• 5 Stages of Instruction Execution

• Fetch (IF)

• Decode / Register Access (ID)

• Execute (EX)

• Memory Access (MEM)

• Write Back (WB)

Pipeline these at 1 stage each

Overview

4 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Performance

• Pipelining does not reduce the time to execute an instruction
• In fact – it usually increases the instruction execution time

• Pipelining does increase the instruction throughput

Overview

Time

IF/ID/EX/MEM/WB 1 2 3

1000 1000 1000

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

EX 1 2 3 4 5 6 7 8 9 10 11 12 13

MEM 1 2 3 4 5 6 7 8 9 10 11 12

WB 1 2 3 4 5 6 7 8 9 10 11

5 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Performance

• Non-pipelined
• 1M Instructions  1x109 units of time

• Pipelined (5 stage)
• 1M Instructions  2x108 – 5 ≈ 2x108 units of time

• Overall throughput improvement of 5x

Overview

6 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Performance

• Non-pipelined
• 1M Instructions  1x109 units of time

• Pipelined (5 stage w/20% penalty per stage)
• 1M Instructions  2.2x108 – 5 ≈ 2.2x108 units of time

• Overall throughput improvement of 4.5x

Overview

7 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Performance

• Pipeline stages typically do not all take the same amount of time

• Non-pipelined instruction throughput = 1 inst / 800ps

• Pipelined (5 stage) instruction throughput = 1 inst / 200ps

• Overall throughput improvement of 4x

Overview

Stage IF ID/RR EX MEM WB

Delay 200ps 100ps 200ps 200ps 100ps

8 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Performance

• Not all instruction need to use all the pipeline stages

Overview

Instruction IF ID/RR EX MEM WB

ADD X X X X

OR X X X X

LW X X X X X

SW X X X X

BEQ X X X

9 © tjELE 455/555 – Spring 2016

Pipelining

• MIPS Pipeline Considerations

• All instructions are 32-bits
• Easier to fetch and decode in one cycle

• Few and regular instruction formats
• R, I, J
• Can decode and read registers in one step - why?

• Load/store addressing
• Can calculate address in 3rd stage, access memory in 4th stage

• Alignment of memory operands
• Memory access takes only one cycle

Overview

10 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Operation

• The program memory, register file and data memory can each be

read or written

• We will use the following convention
• Writes occur in the first half of the clock cycle

• Reads occur in the second half of the clock cycle

How would we implement this?

Overview

11 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Operation

• The book uses the following graphical representation

• In this example
• Reads are done from program memory and the register file

• Write is done on the register file

• The data memory is not used

• The ALU executes

Overview

12 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Operation

• What about this operation should concern us?

• The ID (register read) and the WB access the same resource
• This creates a potential for conflicts

Overview

13 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Hazards

• Hazards are conditions where the next instruction cannot perform

its assigned pipeline action in the next clock cycle

• 3 types
• Structural

• Data

• Control

Hazards

14 © tjELE 455/555 – Spring 2016

Pipelining

• Structural Hazards

• These hazards result from a resource conflict

• Classic case is Harvard vs. vonNeuman memory architectures
• vonNeuman architectures share a single memory for program and data

• A lw or sw command requires access to data memory to load or store the

data value

• It would not be possible to fetch the appropriate instruction during this

clock cycle since the memory would be in use

• The IF would be stalled and a “bubble” would be created in the pipeline

Hazards

15 © tjELE 455/555 – Spring 2016

Pipelining

• Structural Hazards

• vonNeuman memory architecture

data memory access prevents a concurrent instruction fetch

Hazards

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF LW 2 3 Stall 4 5 6 7 8 9 10 11 12 13 14

ID LW 2 3 bubble 4 5 6 7 8 9 10 11 12 13

EX LW 2 3 bubble 4 5 6 7 8 9 10 11 12

MEM LW 2 3 bubble 4 5 6 7 8 9 10 11

WB LW 2 3 bubble 4 5 6 7 8 9 10

16 © tjELE 455/555 – Spring 2016

Pipelining

• Structural Hazards

• MIPS implementation is designed to avoid structural hazards

Hazards

17 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

• These hazards result from a dependence of one instruction on

another instruction still in the pipeline

• Consider the following code snippit

add $s0, $t0, $t1

sub $t2, $s0, $t3

• The value of $s0 is needed to perform the subtraction

Hazards

18 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

add $s0, $t0, $t1

sub $t2, $s0, $t3

• 2 clock cycle bubbles are created

• It would be 3 bubbles – except we can take advantage of our convention
• writes occur in the first half of the clock cycle

• reads occur in the second half of the clock cycle

• the WB occurs during the same clock cycle as the register read

Hazards

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF add sub 3 3 4 5 6 7 8 9 10 11 12 13 14

ID add stall stall 3 4 5 6 7 8 9 10 11 12 13

EX add bubble bubble 3 4 5 6 7 8 9 10 11 12

MEM add bubble bubble 3 4 5 6 7 8 9 10 11

WB add bubble bubble 3 4 5 6 7 8 9 10

19 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

add $s0, $t0, $t1

sub $t2, $s0, $t3

• 2 clock cycle bubbles are created

• It would be 3 bubbles – except we can take advantage of our convention
• writes occur in the first half of the clock cycle

• reads occur in the second half of the clock cycle

• the WB occurs during the same clock cycle as the register read

Hazards

20 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

• In many cases the compiler can avoid a data hazard

add $s0, $t0, $t1

sub $t2, $s0, $t3

or $s2, $t0, $t1

and $s3, $t0, $t3

add $s4, $t1, $t3

add $s0, $t0, $t1

or $s2, $t0, $t1

and $s3, $t0, $t3

add $s4, $t1, $t3

sub $t2, $s0, $t3

Hazards

re-order the instruction to remove
the hazard condition

21 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

• Hardware can also be used to avoid data hazards
• called forwarding or bypassing

• provide the needed data as soon as it is valid

• requires extra circuitry

Hazards

22 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

• Hardware cannot avoid all data hazards
• cannot go backwards in time !

Hazards

lw $s0, 20($t1)

sub $t2, $s0, $t3

23 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

• Forwarding plus compiler optimizations can avoid additional data

hazards

Hazards

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

24 © tjELE 455/555 – Spring 2016

Pipelining

• Control Hazards

• These hazards result from making a decision while other

instructions continue to progress through the pipeline

• Branch instructions are the most common example
• don’t know whether to load the next instruction or not

• three approaches
• stall

• predict

• delay

Hazards

25 © tjELE 455/555 – Spring 2016

Pipelining

• Control Hazards - stall

• Do not load the next instruction into the pipeline

• during decode – know you have a branch

• during execute – know if taking branch or not
• PC will be updated

• Next cycle – fetch the next instruction based on PC value

Hazards

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF add beq 3 3 8 9 10 11 12 13 14 15 16 17 18

ID add beq stall stall 8 9 10 11 12 13 14 15 16 17

EX add beq bubble bubble 8 9 10 11 12 13 14 15 16

MEM add beq bubble bubble 8 9 10 11 12 13 14 15

WB add beq bubble bubble 8 9 10 11 12 13 14

26 © tjELE 455/555 – Spring 2016

Pipelining

• Control Hazards - stall

• Even if you add circuitry to detect the branch and update the PC all

during the decode – can’t avoid a stall

Hazards

27 © tjELE 455/555 – Spring 2016

Pipelining

• Control Hazards - predict

• Many algorithms

• Simplest – assume branch will not be taken
• no penalty if correct

• stall only when wrong

Hazards

28 © tjELE 455/555 – Spring 2016

Pipelining

• Control Hazards – predict
• Predict branch not taken

Hazards

Branch Not Taken

Prediction correct!

Branch Taken

Prediction wrong!

29 © tjELE 455/555 – Spring 2016

Pipelining

• Control Hazards - predict

• Static Branch Prediction
• Predict backward branches - taken

• Predict forward branches – not taken

• Looping code
• executes the loop 100 times

• jumps out of the loop 1 time

• Dynamic Branch Prediction
• Keep track of recent branch behavior (for each branch)

• Assume recent behavior will continue

• When wrong – clear history and start over

• Hardware intensive

Hazards

30 © tjELE 455/555 – Spring 2016

Pipelining

• Control Hazards - delay

• Delayed Decision
• Pipeline always executes the instruction immediately after the branch

• The branch then executes (only 1 cycle delay allowed)

• Requires the next instruction to be independent of the branch decision

• Compiler is designed to set this up

Hazards

31 © tjELE 455/555 – Spring 2016

Pipelining

• Control Hazards - delay

• Delayed Decision (assume HW to limit bubble to 1 cycle)

add $t0,$t1,$t2

beq $t1,$t2,-30

…

re-order

Hazards

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF add beq 3 8 9 10 11 12 13 14 15 16 17 18 19

ID add beq stall 8 9 10 11 12 13 14 15 16 17 18

EX add beq bubble 8 9 10 11 12 13 14 15 16 17

MEM add beq bubble 8 9 10 11 12 13 14 15 16

WB add beq bubble 8 9 10 11 12 13 14 15

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF beq add 8 9 10 11 12 13 14 15 16 17 18 19 20

ID beq add 8 9 10 11 12 13 14 15 16 17 18 19

EX beq add 8 9 10 11 12 13 14 15 16 17 18

MEM beq add 8 9 10 11 12 13 14 15 16 17

WB beq add 8 9 10 11 12 13 14 15 16

32 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline

Pipelined Datapath

 creates a control hazard

 creates a data hazard

33 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• Registers are required to hold intermediate values between stages

Pipelined Datapath

64 bits 128 bits 97 bits 64 bits

Active registers will be highlighted
left side – write
right side - read

34 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• lw instruction - IF

Pipelined Datapath

PC increments
feeds back
stored in IF/ID reg incase needed

Instruction is latched in IF/ID reg

35 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – ID (instruction decode and register read)

Pipelined Datapath

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

36 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – EX

Pipelined Datapath

Add read data 1 to sign extended immediate
from the instruction and store in EX/MEM

Store zero in EX/MEM
Store read data 2 in EX/MEM
Calculate PC offset and store in EX/MEM

37 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – MEM

Pipelined Datapath

Data memory is read and stored in MEM/WB
ALU result is stored in MEM/WB

38 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – MEM

Pipelined Datapath

MEM/WB register is read and fed back to
the register file

This fails! Why?

39 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – MEM

Pipelined Datapath

MEM/WB register is read and fed back to
the register file

This fails! Why?

register address for 3 instructions after lw

40 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• lw instruction – MEM

Pipelined Datapath

MEM/WB register is read and fed back to
the register file

add write register value to ID/EX, EX/MEM, MEM/WB

41 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• sw instruction - IF

Pipelined Datapath

PC increments
feeds back
stored in IF/ID reg incase needed

Instruction is latched in IF/ID reg

sw

42 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – ID (instruction decode and register read)

Pipelined Datapath

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

sw

43 © tjELE 455/555 – Spring 2016

Add read data 1 to sign extended immediate
from the instruction and store in EX/MEM

Store zero in EX/MEM
Store read data 2 in EX/MEM
Calculate PC offset and store in EX/MEM

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – EX

Pipelined Datapath

44 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – MEM

Pipelined Datapath

Data memory is written from EX/MEM
ALU result is stored in MEM/WB
Data memory read data is stored in MEM/WB

45 © tjELE 455/555 – Spring 2016

Pipelining

• Mapping the datapath to a pipeline
• sw instruction – WB

Pipelined Datapath

MEM/WB register is read and fed back to
the register file

46 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Control
• Existing solution does not support our pipeline

Pipelined Datapath Control

47 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Control

• Many more control signals than we show

• IF – all control lines operate the same way for all instructions
• PC is read

• Program Memory is read

• PC is updated

• ID - all control lines operate the same way for all instructions
• Instruction is decoded

• Registers are read

Pipelined Datapath Control

48 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Control

• EX – executes or calculates an address
• RegDst – choose between 2nd or 3rd register field for WB

• ALUOp – L/S, Branch, or R-type

• ALUSrc – selects Read Data 2 or sign extended immediate

• These are generated in the ID stage but used in the EX stage
• Must pass them forward through the ID/EX register

• MEM – R/W to memory and selects the offset branch value
• MemRead , MemWrite – memory read / write

• Branch – combined with “zero” selects the offset branch to feed back to

the PC

• These are generated in the ID stage but used in the MEM stage
• Must pass them forward through the ID/EX register and the EX/MEM register

Pipelined Datapath Control

49 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Control

• WB – chooses what to write back
• RegWrite – enables a write to the register file

• MemtoReg – choose between ALU output or memory output to feed back

to the register file

• These are generated in the ID stage but used in the MEM stage
• Must pass them forward through the ID/EX, EX/MEM and MEM/WB registers

Pipelined Datapath Control

50 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Control

Pipelined Datapath Control

