ELE 455/555
Computer System Engineering

Section 2 — The Processor
Class 3 — Pipelining

BAsesindiitiio

5 L

« Simple Datapath

Add

Instruction [31—-26]

RegDst
Branch

Shift
left 2

Add

ALU
result

MemRead

MemtoReg

Read

address

Instruction | |
[31-0]

Instruction
memory

+ Control ALUOp

MemWrite

| ALUSrc

RegWrite

Instruction [25-21]

Instruction [20-16]

_ | Read

. " &

0
M
Instruction [15-11] 2

ELE 455/555 — Spring 2016

1

Instruction [15-0]

Read
register 1 poad

data 1
register 2
Write Read

register data2

Write
data Registers

16k® 32

Read

Address data

Write Data

Instruction [5-0]

2

data Mmemory|

©tj

BAsesindeitiiido

« 5 Stages of Instruction Execution

Fetch (IF)

Decode / Register Access (ID)
Execute (EX)

Memory Access (MEM)
Write Back (WB)

Pipeline these at 1 stage each

ELE 455/555 — Spring 2016 < © tj

315111 AT r
. »

" 0.4‘70.. .g‘.l' ah
'.." .

O | N

Tl)

-1 "

* Pipeline Performance

* Pipelining does not reduce the time to execute an instruction
* In fact — it usually increases the instruction execution time

» Pipelining does increase the instruction throughput

Time 1000 1000 1000
IF/ID/EX/MEM/WB 1 2 e,
=

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF 1 2 3 4 10 11 12 13 14 15
ID 1 2 3 9 10 11 12 13 14
EX 1 2 8 9 10 11 12 13
MEM 1 7 8 9 10 11
WB 6 7 8 9 10 @

ELE 455/555 — Spring 2016 4 © tj

BAsesindeitiiido

* Pipeline Performance

* Non-pipelined
« 1M Instructions = 1x10° units of time

» Pipelined (5 stage)
e 1M Instructions = 2x108 — 5 = 2x108 units of time

* Overall throughput improvement of 5x

ELE 455/555 — Spring 2016 5 © tj

BAsesindiitiio

* Pipeline Performance

* Non-pipelined
« 1M Instructions = 1x10° units of time

» Pipelined (5 stage w/20% penalty per stage)
« 1M Instructions > 2.2x108 — 5 = 2.2x108 units of time

« Overall throughput improvement of 4.5x

ELE 455/555 — Spring 2016 6 © tj

g

gy | 00"0

=

* Pipeline Performance
» Pipeline stages typically do not all take the same amount of time

Delay 200ps 100ps 200ps 200ps 100ps

* Non-pipelined instruction throughput = 1 inst / 800ps
* Pipelined (5 stage) instruction throughput = 1 inst / 200ps

* Overall throughput improvement of 4x

ELE 455/555 — Spring 2016 7 © tj

BAsesindeitiiido

* Pipeline Performance

* Not all instruction need to use all the pipeline stages

ADD X X X X
OR X X X X
LW X X X X X
SW X X X X

BEQ X X X

ELE 455/555 — Spring 2016 8 © tj

Iy ™

 MIPS Pipeline Considerations

All instructions are 32-bits
» Easier to fetch and decode in one cycle

Few and regular instruction formats
R, I,J
« Can decode and read registers in one step - why?

Load/store addressing
« Can calculate address in 3" stage, access memory in 4t stage

Alignment of memory operands
 Memory access takes only one cycle

ELE 455/555 — Spring 2016 9 © tj

ARA N e 1A

* Pipeline Operation

« The program memory, register file and data memory can each be
read or written

« We will use the following convention
» Writes occur in the first half of the clock cycle
» Reads occur in the second half of the clock cycle

How would we implement this?

ELE 455/555 — Spring 2016 10 © tj

‘\-.J"“. ‘-.d‘

. g "

* Pipeline Operation

* The book uses the following graphical representation

. 200 400 600 800 1000
Time : T T T

add $s0, $t0, $t1 El—f |l:’ MEM IB

* In this example
» Reads are done from program memory and the register file
* Write is done on the register file
 The data memory is not used
« The ALU executes

ELE 455/555 — Spring 2016 11 © tj

* Pipeline Operation

« What about this operation should concern us?

. 200 400 600 800 1000
Time ; T T T T

add $s0, $t0, $t1 EI—E |l:’ MEM la

« The ID (register read) and the WB access the same resource
» This creates a potential for conflicts

ELE 455/555 — Spring 2016 12 © tj

‘\-.J"“. ‘-.d‘

. g "

* Pipeline Hazards

« Hazards are conditions where the next instruction cannot perform
its assigned pipeline action in the next clock cycle

e 3types
« Structural
 Data
« Control

ELE 455/555 — Spring 2016 13 © tj

il ANy e 1 et AU f o™ \ ' . A L AT

—A‘s“ i --.
L) i

o . 3
P ol LA e el e i "o ~ ‘ - | o L Y A

11
4 “‘ LI

e Structural Hazards

 These hazards result from a resource conflict

» Classic case is Harvard vs. vonNeuman memory architectures
« vonNeuman architectures share a single memory for program and data

« Alw or sw command requires access to data memory to load or store the
data value

|t would not be possible to fetch the appropriate instruction during this
clock cycle since the memory would be in use

* The IF would be stalled and a “bubble” would be created in the pipeline

ELE 455/555 — Spring 2016 14 © tj

BAsesindiitiio

5 L

e Structural Hazards

« vonNeuman memory architecture

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF w2 3l ustall b4 5 6 7 8 9 OB |0 .12 Lailde| eis
ID LWl o 2 3 Ngubble 4 5 6 7 8 9 0 w1 [1z 8¢
EX w2 bubble 4 5 6 7 8 9 qEr)™ |
MEM 2 3 bubble 4 5 6 7 8 9 40w | i
WB LW 3 bubble 4 5 6 7 8 9 10

data memory access prevents a concurrent instruction fetch

ELE 455/555 — Spring 2016 15 ©tj

e Structural Hazards

* MIPS implementation is designed to avoid structural hazards

ELE 455/555 — Spring 2016 16 © tj

ARA N e 1A

 Data Hazards

« These hazards result from a dependence of one instruction on
another instruction still in the pipeline

» Consider the following code snippit

add $s0, $t0, $t1
sub $t2, $s0, $t3

« The value of $s0 is needed to perform the subtraction

ELE 455/555 — Spring 2016 17 © tj

B T

0""

oL

. o
-

B
::. 7 :'"“ g" "l': ¥ | OEJ «" z":.

 Data Hazards

add $s0, $t0, $t1
sub $t2, $s0, $t3

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

IF add sub 3 3 4 5 6 7 8 9 10 11 12 13 14
ID add stall stall 3 4 5 6 7 8 9 10 11 12 13
EX add bubble bubble 3 4 5 6 7 8 9 10 11 12
MEM add bubble bubble 3 4 5 6 7 8 9 10 11
WB [add |bubble bubbe 3 4 5 6 7 8 9 10

» 2 clock cycle bubbles are created

« It would be 3 bubbles — except we can take advantage of our convention
» writes occur in the first half of the clock cycle
» reads occur in the second half of the clock cycle
» the WB occurs during the same clock cycle as the register read

ELE 455/555 — Spring 2016 18 © tj

AN T

 Data Hazards

add $s0, $t0, $t1
sub $t2, $s0, $t3

- 200 400 600 800 1000 1200 1400
Time

™) T T all T T
bubble bubble bubble bubble bubble
0 @ © @ O
bubble bubble bubble bubble bubble
@ @) @) Q@ ®

sub $12, 550, 13 B @:’_MEM_lB;

» 2 clock cycle bubbles are created

» It would be 3 bubbles — except we can take advantage of our convention
» writes occur in the first half of the clock cycle
* reads occur in the second half of the clock cycle
the WB occurs during the same clock cycle as the register read

ELE 455/555 — Spring 2016

1600
—

" ©tj

AN T

 Data Hazards

* In many cases the compiler can avoid a data hazard

add $s0, $t0, $t1
sub $t2, $s0, $t3
or $s2, $t0, $t1
and $s3, $t0, $t3

add $s4, $t1, $t3 re-order the instruction to remove

the hazard condition
add $s0, $t0, $t1

or $s2, $t0, $t1
and $s3, $t0, $t3
add $s4, $t1, $t3
sub $t2, $s0, $t3

ELE 455/555 — Spring 2016 20 © tj

BAsesindeitiiido

s

 Data Hazards

« Hardware can also be used to avoid data hazards
 called forwarding or bypassing
« provide the needed data as soon as it is valid
* requires extra circuitry

Program

execution _ 200 400 600 800 1000
order Time T T T T T

(in instructions)

add $50, $t0, $t1 43
MEM 4IB

ELE 455/555 — Spring 2016 21 Ot

sub $t2, $s0, $t3

 Data Hazards

« Hardware cannot avoid all data hazards
« cannot go backwards in time !

Time

Iw S$s0, 20(St1)

sub St2, Ss0, St3

200 400 600

800 1000

=3

Program
execution

200 400 600 800

1000 1200 1400

order Time
(in instructions)

sub $t2, $s0, $t3

ELE 455/555 — Spring 2016

lw $s0, 20($t1) El—f |

bubble bubble¢ (_bubble
@ @ O
e

22

B
bubble/ (_bubble
@ @
MEM

e

© t]

'.: ;'A

y

 Data Hazards

» Forwarding plus compiler optimizations can avoid additional data
hazards

Tw $tl, 0($t0) Tw $t1l, 0($t0)

W 1w

o |— add $t3, $ti;(5t2) 1w
SW $t3, 12($t0) add

Tw @ 8($t0) SW .
stall |— add $t5, $t1, add $t5, $t1,
Sw $t5, 16($t0) Sw $t5, 16($t0)

ELE 455/555 — Spring 2016 23 © tj

AN T

 Control Hazards

» These hazards result from making a decision while other
instructions continue to progress through the pipeline

» Branch instructions are the most common example
« don’t know whether to load the next instruction or not

» three approaches
 stall
» predict
« delay

ELE 455/555 — Spring 2016 24 © tj

~u»00050‘\‘.00-l"

g |
Hazarn S ﬂ":& |

 Control Hazards - stall

« Do not load the next instruction into the pipeline

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

il (W) eaniiee T) Reapimndn i Ve Roh (W aNiEE [1e* * a7 | vs
ID add Bl (eeub) heablon-hine Ml Bome chlle | s |6 |
EX add beq bubble bubble 8 9 10 11 12 13 14 15 16
MEM add beq bubble bubble 8 9 10 11 12 13 14 15
WB add beq bubble bubble 8 9 10 11 12 13 14

» during decode — know you have a branch

» during execute — know if taking branch or not
+ PC will be updated
* Next cycle — fetch the next instruction based on PC value

ELE 455/555 — Spring 2016 25 © tj

ARA N e 1A

‘;.l’ﬁ'

' '.0
ras

 Control Hazards - stall

« Even if you add circuitry to detect the branch and update the PC all
during the decode — can’t avoid a stall

Program

execution 37 200 400 600 800 1000 1200 1400 E
Order | | I | | | | g
(in instructions)

add $4, $5, $6 Ins;;:g;ion Reg| ALU aB:et:s Reg

Instruction Data
oIk m fetch Al - e R
bubble/(bubble/(bubble/(bubbl buble
¢

or $7, $8, $9 < »|Instruction Data

\ 400 ps fetch TR access | 1°9

ELE 455/555 — Spring 2016 26 © tj

« Control Hazards - predict

« Many algorithms

« Simplest — assume branch will not be taken
* no penalty if correct
 stall only when wrong

ELE 455/555 — Spring 2016 27 © tj

ARA N e 1A

m

« Control Hazards — predict
* Predict branch not taken

Program
execution 200 400 600 800 1000 1200 1400
Order T T T L ! T 18 _———
(in instructions)
add$4,85,86 || |meo| au | 22, e

Branch Not Taken beq $1, $2, 40 200 ps' een | |Res| AU | oo |Reg

Prediction correct! <~ Instructi Dat
w $3, 300(50) 200ps | feten | [P ALY | access |Red
Program
execution 1 200 400 600 800 1000 1200 1400
Order T 1 T T 1 1 1

(in instructions)

add $4,85,86 |G| |Reg| AW | 0% | Reg
Branch Taken 3
Instruction Data
Prediction wrong! beq $1, $2, 40 200 psl fetch S, L e A
bubbl ubbl ubbl ubble/Cbubble
@
or $7, $8, $9 Instruction Data
400 ps fetch 2 [g access | 1°9

ELE 455/555 — Spring 2016 28 © tj

e Control Hazards - predict

« Static Branch Prediction
* Predict backward branches - taken
* Predict forward branches — not taken
» Looping code
» executes the loop 100 times
* jumps out of the loop 1 time

« Dynamic Branch Prediction

Keep track of recent branch behavior (for each branch)
Assume recent behavior will continue

When wrong — clear history and start over

Hardware intensive

ELE 455/555 — Spring 2016 29 © tj

ARA N e 1A

« Control Hazards - delay

« Delayed Decision
* Pipeline always executes the instruction immediately after the branch
» The branch then executes (only 1 cycle delay allowed)

» Requires the next instruction to be independent of the branch decision
« Compiler is designed to set this up

ELE 455/555 — Spring 2016 30 © tj

-~y .
- @ o =

,'v“ 4"\""‘: "

. [:
.
4 L . *l -

' . "." ‘ A .
Hazards AT A

« Control Hazards - delay

» Delayed Decision (assume HW to limit bubble to 1 cycle)

add $t0,$t1,$t2
beq $t1,%$t2,-30

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

i (W) el el [E)) Fomime e Vi e (A ciisie | v * 1 | "o
ID add Eil ekl Beablnw il M oal s e | o |1 s
EX addi pwbens |bubblef sewslench a0 B wassslsoeshm 3t i1d |15 | 16 | 17
MEM el T - T I S PR T T Tl - e
WB add beq bubble 8 9 10 11 12 13 14 15
re-order

Time | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

i dgbeand adcduduss sabemon 910 ol got Jenod | 39l mlwtsgbeis g | 18 10 | 20
ID e [e, e e AR N (AL [1/ e]| oo
EX beq AedR [2 B o L linlS i ot Nl gl . [= o e R e

MEM sl e e o T 0 W it o T el

ws ST -t Tl e T o = Y - B -

ELE 455/555 — Spring 2016 31 © tj

BAsesindiitiio

al

« Mapping the datapath to a pipeline

IF: Instruction fetch

ID: Instruction decode/
register file read

EX: Execute/

address calculation

|
< creates:a control hazard

Read

0
M
u PC 0>
X

1

Address

Instruction

Instruction
memory

register 1

Read
register 2

Read

data 1

Write
register

Write

ELE 455/555 — Spring 2016

data

Read
data 2

x

ALU A1y

MEM: Memory access

Address

result

Data
Memory

Write

data

Read

data

WB: Write back

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
ma -
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|

< -

& creates ai data hazard

©tj

BAsesindiitiio

al

« Mapping the datapath to a pipeline
» Registers are required to hold intermediate values between stages

ID/EX EX/MEM MEM/WB

128 bits 97 bits 64 bits

IF/ID

64 bits

Read
register 1

Read
register 2
b Registers go.q
o | Write data 2|
" | register
Write
data

Read
data 1

PC | Address
-

Instruction
memory

Instruction

Read
»| Address data
Data
memory

Write
data

Active registers will be highlighted
left side — write
right side - read

ELE 455/555 — Spring 2016 33 © tj

A ANl T A ' .Y

Mapping the datapath to a pipeline
 Iw instruction - IF

Iw
I |

! Instruction fetch

IF/ID ID/EX EX/MEM MEM/WB

YAdd Adﬁ
Shift s
left 2

% He?d Read
% register 1 e >
= Read ——
reglster% . P
egisters paaq >
whi o) ~ Address i -ﬁ
register Data
>-| Wiite memory
data
- Write
- ~ | data
PC increments 5 Sign- | 22 - -
feeds back extend
stored in IF/ID reg incase needed
Instruction is latched in IF/ID reg

ELE 455/555 — Spring 2016 34 © tj

A ANl T A ' .Y

Mapping the datapath to a pipeline

* |w instruction — ID (instruction decode and register read)
| = |

|' Instruction decode I

IF/1D ID/EX EX/MEM MEM/WB

Add
result

Read
register 1

Address

Instruction

Read -
Instruction register2 .
Regi - ead
memor L Address
Y Write # i ->-|
register o
Write memory
data
- Write
~ | data

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

ELE 455/555 — Spring 2016 35 © tj

ARA N e 1A

m

« Mapping the datapath to a pipeline
 Iw instruction — EX N

Execution

IF/ID ID/EX EX/MEM MEM/WB

Add > > \I

4
Shift result
left 2

PC > Address c Read
2[7 | register 1 Read >
2 data 1
= _ |Read -
Instruction = register 2 5
Registi A ead
memory —e . egis arsﬁeac| . Address Al
" | register data 2 Data
—»| Write memory
data
Write
data
Add read data 1 to sign extended immediate 16 [Sign- | 32 ~
from the instruction and store in EX/MEM "1 extend
Store zero in EX/MEM
Store read data 2 in EX/MEM
Calculate PC offset and store in EX/MEM

ELE 455/555 — Spring 2016 36 © tj

ARA N e 1A

m

« Mapping the datapath to a pipeline
* Iw instruction — MEM

IF/ID ID/EX EX/MEM MEM/WB

4 I

Address

Instruction

memory

Data memory is read and stored in MEM/WB
ALU result is stored in MEM/WB

ELE 455/555 — Spring 2016

Instruction

Read

Read

Write
register
Write
data

register 1

register 2
Registers pgaq

Read

data 1

data 2

16 Sign- 32
extend

Address

mei

37

©tj

A ANl T A ' .Y

Mapping the datapath to a pipeline
* Iw instruction — MEM

rite back

IF/ID ID/EX EX/MEM MEM/WB

. E e
Shift
left 2

Address .é
&
£ — -
Instruction - Read
memory - - <@~ Address data '»‘
Data
memory
"y _ | Write
data
MEM/WSB register is read and fed back to ~
the register file
This fails! Why? —

ELE 455/555 — Spring 2016 38 © tj

B A N9 ll 11 ' : - ‘ - TNy ST

.) Sy ‘e ‘ "'
. i Btk oo ‘ o

- AR
? e

INAT Ly

e
2 |

ined
1-“’0

« Mapping the datapath to a pipeline
* Iw instruction — MEM

lw
[[ions after |
register ac;ldress for 3 instructions after lw }m{
'_F/ﬂ E_Ei EX/MEM MEM/WB
]

Add

4 : YAdd
Shift result
left 2

Address .é
% =
= —> ——
il - o it e L
Data
memory
i, _ | Write
data
MEM/WSB register is read and fed back to 16 Sign- | 2 -
the register file | extend =
This fails! Why? - - - -

ELE 455/555 — Spring 2016 39 © tj

' e 1 : ' - ~n0.050‘\l....0-‘
‘95. . .! Jl' | . - :
' ‘ o. . .l . °

&

Mapping the datapath to a pipeline
 |w instruction — MEM

add write register value to ID/EX, EX/MEM, MEM/WB
1N\

IF/ID MEM/WB

4 I

0
M
u Address
X

f

Instruction -
memory

Read
register 1

Read

register 2
Registers pgoqg

Write data 2

register

Write

data

A
Instruction
R I 1

Read
Address i l'>
Data
memory
Write
data

=

MEM/WSB register is read and fed back to
the register file

ELE 455/555 — Spring 2016 40 © tj

AN T

Mapping the datapath to a pipeline
e sSw instruction - IF

I sW I

! Instruction fetch

IF/ID ID/EX EX/MEM MEM/WB

YAdd Adﬁ
Shift s
left 2

% He?d Read
% register 1 e >
= Read ——
reglster% . P
egisters paaq >
whi o) ~ Address i -ﬁ
register Data
>-| Wiite memory
data
- Write
- ~ | data
PC increments 5 Sign- | 22 - -
feeds back extend
stored in IF/ID reg incase needed
Instruction is latched in IF/ID reg

ELE 455/555 — Spring 2016 41 © tj

A ANl T A ' .Y

« Mapping the datapath to a pipeline
* sSw instruction — ID (instruction decode and register read)

SW
Instruction decode

IF/1D ID/EX EX/MEM MEM/WB

Add
result

Read
register 1

Address

Instruction

Read -
Instruction register2 .
Regi - ead
memor L Address
Y Write # i ->-|
register o
Write memory
data
- Write
~ | data

Read data 1 is read and stored in ID/EX
Read data 2 is read and stored in ID/EX
Sign is extended and stored in ID/EX
PC+4 is forwarded to ID/EX

ELE 455/555 — Spring 2016 42 © tj

ARA N e 1A

m

« Mapping the datapath to a pipeline
* sw instruction — EX b

Execution

IF/ID

Add - > \I
4 AdgAdd
ﬂ

ID/EX EX/MEM MEM/WB

A |

0
M
u PC | Address c _ | Read Read
1x -‘3 register 1 d:taa - >
| = »| Read —
nstruction = register 2
memory 'ﬁh Wiits Registers . ~ Address F;gf; B
register data 2 Data
— Write memeory
data
Write
~ | data
Add read data 1 to sign extended immediate 16 [sign- | 32 >
from the instruction and store in EX/MEM v extend
Store zero in EX/MEM
Store read data 2 in EX/MEM ™
Calculate PC offset and store in EX/MEM Y
ELE 455/555 — Spring 2016 43 O tj

A ANl T A ' .Y

Mapping the datapath to a pipeline
* sSw instruction — MEM

sw
| I

Memory

IF/ID ID/EX EX/MEM MEM/WB

+

PC Address % Read
= register 1 Read
7] data 1
= Read
Instruction register 2
> Registers o4 Read
memor
l Write data 2 gala ->‘
register
Write
data
Data memory is written from EX/MEM 16 sign- | 22 >
ALU result is stored in MEM/WB Extend
Data memory read data is stored in MEM/WB
| sl o |

ELE 455/555 — Spring 2016 44 © tj

« Mapping the datapath to a pipeline

* sSw instruction — WB

IF/ID

ID/EX

+

Address

Instruction
memory

Y

MEM/WSB register is read and fed back to
the register file

ELE 455/555 — Spring 2016

Read
register 1

Read
register 2

Write

Instruction
1y

register

Write
data

Read
data 1

Registers paqq

data 2

EX/MEM

A\

16 sign- | 32
extend

MEM/WB

37

Address

Write
data

Data
memory

Read
data

f\‘ E"('.‘a. . ,’.

* Pipeline Control
» EXxisting solution does not support our pipeline

Add

= xc=m ©

4 Add ALY

result
Shift
RegDst left 2
Branch
MemRead
Instruction [31-26] MemtoReg
+ Control ALUOp
MemWrite
| ALUSrc
RegWrite

Instruction [25-21] Read
Read —= f
address register 1 Roaq
Instruction [20-16] Read data 1

Instruction | register 2
131-0] [T?

0

M| | Write Read
Instruction || |instruction [15-11] | ¥ [register data 2
memory 1

Write
data Registers

Instruction [15-0] 16L @ &

Instruction [5-0]

ELE 455/555 — Spring 2016 16 © tj

Read
Address data

; Data
m;e memory|

Pipeline Control

« Many more control signals than we show

« |F — all control lines operate the same way for all instructions

« PCisread
* Program Memory is read
 PC is updated

« |D - all control lines operate the same way for all instructions

* |nstruction is decoded
» Registers are read

ELE 455/555 — Spring 2016 47 ©tj

T STy FETTTY YN MR- ¢ v ok ‘ “‘"‘“‘
o-. .~- \.- - - - . .Q.

. st -3 N o
~ Pipelining R miktomis:

- '.

: ,,:f AT B

“1PE
-

- '}1 P lF”“TJ!“T;. N« GHP -

Pipeline Control

! §
i

« EX — executes or calculates an address
« RegDst — choose between 2" or 3 register field for WB
« ALUOp - L/S, Branch, or R-type
 ALUSrc — selects Read Data 2 or sign extended immediate

 These are generated in the ID stage but used in the EX stage
* Must pass them forward through the ID/EX register

« MEM — R/W to memory and selects the offset branch value
« MemRead , MemWrite — memory read / write
« Branch — combined with “zero” selects the offset branch to feed back to
the PC

 These are generated in the ID stage but used in the MEM stage

* Must pass them forward through the ID/EX register and the EX/MEM register
ELE 455/555 — Spring 2016 48 O tj

Pipeline Control

 WB - chooses what to write back
« RegWrite — enables a write to the register file
« MemtoReg — choose between ALU output or memory output to feed back
to the register file

 These are generated in the ID stage but used in the MEM stage
* Must pass them forward through the ID/EX, EX/MEM and MEM/WB registers

L#
=

wB

ELE 455/555 — Spring 2016 IF/ID ID/EX 49 EXMEM MEMWB © tj

BAsesindeitiiido

’ .

* Pipeline Control

PCSrc

L5

X/MEM

wWB

Instruction
memory

ELE 455/555 — Spring 2016

MEM/WB

ID/EX
wB
Control M
IF/ID 2
a2
=
=
g
[+
5 Read
o
= i 1 Read
g Fuag data 1
B Read
£ register 2
Write Read
register gated
Write
data
Instruction
15-0] 16 [sign- |32
T | extend
Instruction
[20-18]
Instruction
[15-11]

Branch

2

=

E:

@

=

Ri

Address d:;d

Data

memory

Write
data

wB

MemRead

MemtoReg

=~ i

©tj

