
ELE 455/555

Computer System Engineering

Section 2 – The Processor

Class 4 – Pipelining with Hazards

2 © tjELE 455/555 – Spring 2016

Pipelining

• Simple Datapath

Overview

3 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Control

Overview

4 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

Data Hazards

sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

sub $2,$1,$3

$2 = ?

5 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

Data Hazards

sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

sub $2,$1,$3

and $12,$2,$5

$2 = ?

6 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

Data Hazards

sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

sub $2,$1,$3and $12,$2,$5

or $13,$6,$2

$2 = ?

7 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

Data Hazards

sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

sub $2,$1,$3and $12,$2,$5or $13,$6,$2

add $14,$2,$2

$2 = ?

8 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

Data Hazards

sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

sub $2,$1,$3and $12,$2,$5or $13,$6,$2add $14,$2,$2

sw $15,100($2)

$2 = val

9 © tjELE 455/555 – Spring 2016

Pipelining

• Data Hazards

Data Hazards

10 © tjELE 455/555 – Spring 2016

Pipelining

• Forwarding

Data Hazards

11 © tjELE 455/555 – Spring 2016

Pipelining

• Detecting the need for Forwarding

• Terminology:
• ID/EX.RegisterRs = register # whose value is found in register ID/EX

from read data 1 in the register file

• ID/EX.RegisterRt = register # whose value is found in register ID/EX from

read data 2 in the register file

Eg. sub $2, $1, $3 // in execute stage

ID/EX.RegisterRs = $1

ID/EX.RegisterRt = $3

• EX/MEM.RegisterRd= destination register # whose value is found in

register EX/MEM

• MEM/WB.RegisterRd= destination register # whose value is found in

register MEM/WB

Data Hazards

12 © tjELE 455/555 – Spring 2016

Pipelining

• Detecting the need for Forwarding

• Conditions:

• 1a) EX/MEM.RegisterRd = ID/EX.RegisterRs
• EX/MEM currently holds a value needed by an instruction about to enter EX

• 1b)) EX/MEM.RegisterRd = ID/EX.RegisterRt
• EX/MEM currently holds a value needed by an instruction about to enter EX

• 2a) MEM/WB.RegisterRd = ID/EX.RegisterRs
• MEM/WB currently holds a value needed by an instruction about to enter EX

• 2b) MEM/WB.RegisterRd = ID/EX.RegisterRt
• MEM/WB currently holds a value needed by an instruction about to enter EX

Data Hazards

13 © tjELE 455/555 – Spring 2016

Pipelining

• Detecting the need for Forwarding

sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

• sub-and is a type 1a hazard
• and Rs ($2) needs result of sub (Rd in EX/MEM)

• sub-or is a type 2b hazard
• or Rt ($2) needs result from sub (Rd in MEM/WB)

• sub-add is not a hazard due to write/read policy

Data Hazards

14 © tjELE 455/555 – Spring 2016

Pipelining

• Implementing Forwarding

• Need Rd in EX/MEM and MEM/WB registers
• We are already doing this to support proper WB

• Need to multiplex the ALU output from EX/MEM and the WB output

from MEM/WB into the ALU inputs

• Need control to manage the decision process
• Inputs: Rs, Rt, Rd from EX/MEM, Rd from MEM/WB

aka: ID/EX.RegisterRs, ID/EX.RegisterRt,

EX/MEM.RegisterRd, MEM/WB.RegisterRd)

• Outputs: ALU input mux control A, ALU input mux control B

Data Hazards

15 © tjELE 455/555 – Spring 2016

Pipelining

• Implementing Forwarding

Data Hazards

16 © tjELE 455/555 – Spring 2016

Pipelining

• Implementing Forwarding

• 2 additional conditions for forwarding

• Only forward when a register write is part of the instruction

• Only forward when the register write is not to register $0

Data Hazards

17 © tjELE 455/555 – Spring 2016

Pipelining

• Implementing Forwarding

• EX hazard
• if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

• if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

• MEM hazard
• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Data Hazards

18 © tjELE 455/555 – Spring 2016

Pipelining

• Implementing Forwarding

• 1 more condition

• Double Data Hazard

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

• Both hazards occur

• Want to use the most recent
• Revise MEM hazard condition

• Only forward if EX hazard condition isn’t true

Data Hazards

19 © tjELE 455/555 – Spring 2016

Pipelining

• Implementing Forwarding
• EX hazard

• if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

• if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

• MEM hazard

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Data Hazards

20 © tjELE 455/555 – Spring 2016

Pipelining

• Implementing Forwarding

Data Hazards

21 © tjELE 455/555 – Spring 2016

Pipelining

• Stalling the pipeline and inserting a bubble
• Consider a load-use hazard

Stall

22 © tjELE 455/555 – Spring 2016

Pipelining

• Stalling the pipeline and inserting a bubble
• Load-use hazard

• Cannot be resolved with forwarding stall

• Check for a memory read value in an instruction in the execute

stage

• Do this in the ID stage

• Load-use hazard:

ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or

(ID/EX.RegisterRt = IF/ID.RegisterRt))

• When true – stall the pipeline

Stall

23 © tjELE 455/555 – Spring 2016

Pipelining

• Stalling the pipeline and inserting a bubble

• Force the control values (for EX, MEM, and WB) to “0” in the ID/EX

stage

• “0” for the control signals causes nothing to happen

• Prevent the PC from updating

• Prevent the IF/ID register from updating

 On next clock – will reload the same value into IF/ID

At the same time the LW instruction progresses to the MEM stage and

the value is available to be forwarded

Stall

24 © tjELE 455/555 – Spring 2016

Pipelining

• Stalling the pipeline and inserting a bubble

Stall

25 © tjELE 455/555 – Spring 2016

Pipelining

• Stalling the pipeline and inserting a bubble

Stall

26 © tjELE 455/555 – Spring 2016

Pipelining

• Stalling the pipeline and inserting a bubble

Stall

27 © tjELE 455/555 – Spring 2016

Pipelining

• Branch Hazard

• Consider the following code snippit

beq $1, $3, skip

and $13, $6, $2

add $14, $2, $2

skip lw $4, 50($7)

• The branch decision is known after the calculation of the branch

address and the comparison (subtract and check for zero), and is

available in the MEM stage

• If the branch is ignored – we will have the and, add and lw

instructions in the pipeline – all is well

• If the branch is taken we will have the and, add and lw instructions

in the pipeline – but we do not want them to execute

Control Hazards

28 © tjELE 455/555 – Spring 2016

Pipelining

• Branch Hazard

Control Hazards

29 © tjELE 455/555 – Spring 2016

Pipelining

• Branch Hazard

• In our current implementation

• We assume branches are not taken

• We would need to flush the pipeline for taken branches
• Branch decision is available in the MEM stage

• Assuming the branch target is not already in the pipeline

• inserting 3 bubbles into the pipeline

• ? – How far can we move the decision forward to reduce the impact

of taken branches

Control Hazards

30 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline Control

Overview

31 © tjELE 455/555 – Spring 2016

Pipelining

• Branch Hazard

• Most branches are simple comparisons

• equal all bits the same

• negative/positive look at msb

• We can move most of the branch prediction logic forward to the ID stage
• We have register values (some may be forwarded!)

• Need to modify the forwarding logic to account for branches

• We can move the branch address calculation forward to the ID stage

• Still have a single cycle stall – IF of the next instruction is occurring in

parallel with ID detection of the taken branch

Control Hazards

32 © tjELE 455/555 – Spring 2016

Pipelining

• Branch Hazard

• Consider this code snippit

sub $10, $4, $8

beq $1, $3, skip

and $12, $2, $5

or $13, $2, $6

add $14, $4, $2

…

skip lw $4, 50($7)

Control Hazards

33 © tjELE 455/555 – Spring 2016

Pipelining

• Branch Hazard

Control Hazards

skip

34 © tjELE 455/555 – Spring 2016

Pipelining

• Branch Hazard

Control Hazards

skip

35 © tjELE 455/555 – Spring 2016

Pipelining

• Branch Hazard

• This approach reduces the impact of branch hazards

• There may still be data hazards that cannot be avoided

• Branch dependent on ALU output from previous instruction

add $4, $5, $6

beq $1, $4, skip

during the beq ID stage, the add is in EX stage and $4 is not available

 1 stall cycle

Control Hazards

36 © tjELE 455/555 – Spring 2016

Pipelining

• Branch Hazard

• This approach reduces the impact of branch hazards

• There may still be data hazards that cannot be avoided

• Branch dependent on previous lw instruction
lw $1, 50($7)

beq $1, $4, skip

the lw result will not be available until the MEM cycle is complete

 2 stall cycles

Control Hazards

37 © tjELE 455/555 – Spring 2016

Pipelining

• Branch Prediction

• For deeper pipelines – the cost of missing a branch decision can

be significant – many clock cycles lost

• Leads to dynamic branch prediction
• Keep track if branch was previously taken or not

• Load either the next instruction or the target instruction based on

prediction value

Control Hazards

38 © tjELE 455/555 – Spring 2016

Pipelining

• Dynamic Branch Prediction – 1 bit

• Use a small branch prediction buffer
• n words deep

• 1 bit of prediction value (1 bit word)

• n is derived from the PC value
• last 8 bits of PC 256 words deep

• The PC value references one of n predictions values
• Assuming a branch instruction

• Take the branch if the prediction value is set to 1

• Don’t take the branch if the prediction value is set to 0

• If the prediction was wrong – invert the prediction value

Control Hazards

39 © tjELE 455/555 – Spring 2016

Pipelining

• Dynamic Branch Prediction – 1 bit

Control Hazards

…

PC
ADDR B

0x00000000 0

0x00000001 0

0x00000010 1

…

0x11111110 1

0x11111111 1

Branch Table

40 © tjELE 455/555 – Spring 2016

Pipelining

• Dynamic Branch Prediction – 1 bit

• Issues

• Multiple PC values point to the same branch table location
• over write each other

 wrong guesses

• Each incorrect guess can lead to 2 wrong guesses
• eg. Assume mostly loop back – bit set to 1

when you do not loop back – you stall and set bit to 0

next cycle you want to loop back but bit is 0 – stall and set bit to 1

• 2 stalls

Control Hazards

41 © tjELE 455/555 – Spring 2016

Pipelining

• Dynamic Branch Prediction – 2 bit

• Use 2 bits to make prediction decisions
• Only change the prediction on 2 successive mispredictions

• Resolves the 2 stall issue of 1 bit prediction

Control Hazards

…

PC
ADDR B1 B0

0x00000000 0 0

0x00000001 0 0

0x00000010 1 0

…

0x11111110 0 1

0x11111111 1 1

Branch Table

42 © tjELE 455/555 – Spring 2016

Pipelining

• Dynamic Branch Prediction – 2 bit

Control Hazards

43 © tjELE 455/555 – Spring 2016

Pipelining

• Dynamic Branch Prediction – n bit

• Use n bits to make prediction decisions
• Use a saturated up/down counter for each table entry

• Only change prediction when MSB toggles

Control Hazards

…

PC
ADDR B7 B6 B5 B4 B3 B2 B1 B0

0x00000000 0 0 0 1 0 0 1 0

0x00000001 0 1 1 0 0 0 0 0

0x00000010 1 0 1 0 1 0 1 0

…

0x11111110 0 1 0 1 0 1 0 1

0x11111111 1 1 0 1 0 1 1 0

Branch Table

