
ELE 455/555

Computer System Engineering

Section 2 – The Processor

Class 5 – Parallel Processing and

Pipelines

2 © tjELE 455/555 – Spring 2016

Pipelining

• Simple Datapath

Overview

3 © tjELE 455/555 – Spring 2016

Pipelining

• Simple Pipeline

Overview

4 © tjELE 455/555 – Spring 2016

Pipelining

• Pipeline with Hazard Detection and Forwarding

Control Hazards

5 © tjELE 455/555 – Spring 2016

Pipelining

• Exceptions are unplanned events

• Interrupts and Exceptions – sometimes used interchangeably

• Interrupts
• events originated from outside the processor core

• external interrupt pin

• A/D complete interrupt

• Input capture interrupt

• Exceptions
• events originated from inside the processor core

• software interrupt (OS)

• illegal instruction

• overflow

Exceptions

6 © tjELE 455/555 – Spring 2016

Pipelining

• Response to Exceptions

• Must save the current instruction
• May be the offending instruction

• If not – it is the instruction you want to return to

• Saved in the Exception Program Counter (EPC)

• Transfer control of the processor to an exception handing routine
• Need to know what the exception is

• cause register

• vectored interrupt

• Correct the issue if possible
• Return to program execution (using value in EPC)

• If not correctable
• Kill program

• Return to program execution (using value in EPC)

• Abort

Exceptions

7 © tjELE 455/555 – Spring 2016

Pipelining

• Cause Register

• Register with a bit to indicate each identifiable exception type

• Exception routine (at a fixed memory location)
• Reads the Cause Register to determine what type of exception has

occurred

• Responds to the identified exception

• Can support more than 1 simultaneous exception
• Routine can build priority into it’s response

• MIPS uses this approach

Exceptions

8 © tjELE 455/555 – Spring 2016

Pipelining

• Vectored Interrupt

• Each interrupt type points the PC to a specific memory location

• Exception routines (at pre-defined memory locations)
• Know the cause because each is targeted at a specific cause

• Responds to it’s specific exception

• Can support more than 1 simultaneous exception
• New vectors interrupt running exception routines

• Logic prioritizes exception on the same clock cycle

Exceptions

9 © tjELE 455/555 – Spring 2016

Pipelining

• Exceptions in a Pipeline

• Control Hazard

• Consider an overflow
add $s0,$s0,$t0

• Prevent $s0 from being stored with the wrong result

• Complete any instructions in front of the add in the pipeline

• Flush any instructions after the add in the pipeline

• Save PC for the add instruction into the EPC

• Save the cause in the Cause Register

• Transfer control to the exception handler routine

• Looks almost like a mis-predicted taken branch

Exceptions

10 © tjELE 455/555 – Spring 2016

Pipelining

• Exceptions in a Pipeline

Exceptions

What stops $s0 from getting
corrupted?

11 © tjELE 455/555 – Spring 2016

Pipelining

• Exceptions in a Pipeline - example

• Exception on add in

40 sub $11, $2, $4
44 and $12, $2, $5
48 or $13, $2, $6
4C add $1, $2, $1
50 slt $15, $6, $7
54 lw $16, 50($7)

…

• Handler

80000180 sw $25, 1000($0)
80000184 sw $26, 1004($0)

…

Exceptions

12 © tjELE 455/555 – Spring 2016

Pipelining

• Exceptions in a Pipeline - example

Exceptions

13 © tjELE 455/555 – Spring 2016

Pipelining

• Exceptions in a Pipeline - example

Exceptions

14 © tjELE 455/555 – Spring 2016

Pipelining

• Multiple Exceptions in a Pipeline

• Pipelining overlaps multiple instructions
• Could have multiple exceptions at once

• Simple approach: deal with exception from earliest instruction
• Flush subsequent instructions

• “Precise” exceptions

• In complex pipelines
• Multiple instructions issued per cycle

• Out-of-order completion

• Maintaining precise exceptions is difficult!

Exceptions

15 © tjELE 455/555 – Spring 2016

Pipelining

• Multiple Exceptions in a Pipeline

• Pipelining overlaps multiple instructions
• Could have multiple exceptions at once

• Simple approach: deal with exception from earliest instruction
• Flush subsequent instructions

• “Precise” exceptions

• In complex pipelines
• Multiple instructions issued per cycle

• Out-of-order completion

• Maintaining precise exceptions is difficult!

•  Imprecise Exceptions
• Let the handler figure it out!

Exceptions

16 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Instruction Level Parallelism (ILP)

• Allows more instructions to complete per period of time
•  higher throughput  higher performance

• Pipelining is our first example of ILP

• Increase performance by making deeper pipelines
• Cut the work into smaller pieces and run the clock faster

• More instructions complete for a fixed unit of time

• There is a limit
• Deeper pipelines have higher costs for branches and exceptions

Overview

17 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• ILP – Multiple Issue

• Create multiple parallel pipeline stages

• Start multiple instructions on each clock cycle

• Static Multiple Issue
• Compiler organizes instructions into groups

• Creates “issue slots” – instructions that can be executed in parallel

• Compiler responsible for detecting and avoiding hazards

• Dynamic Multiple Issue
• CPU examines the incoming instruction stream

• Groups instructions into issue slots

• CPU responsible for detecting and avoiding hazards
• Compiler can make the job easier

Overview

18 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• ILP – Speculation

• Predict what to do with each instruction
• Start as soon as possible

• Wait for a hazard to clear

• Check to see if prediction was correct

• If right
• Continue with execution

• If wrong
• Back-up and choose the other path – not easy

Overview

19 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• ILP – Speculation

• SW Speculation

• Compiler tries to guess at what path the code will take

• Re-orders instructions to allow multiple issue

• Adds corrective code for the cases where it is wrong

• HW Speculation

• Buffers the results from any speculative paths

• Releases the results once it is known that the speculation was correct
• allows WB

• Dumps the results and backs up if the speculation was incorrect
• flushes anything still in the pipeline

• re-issues the correct instructions

Overview

20 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• ILP – Speculation

• Very Complex

• Complexity for the compiler

• Significant HW

• Can create exceptions
• speculate on a branch where the address is incorrect if the prediction is

incorrect

• without speculation – the exception would never occur

• Buffer the exceptions and wait until the status of the speculation is known

• Must work well or it hurts more than it helps

Overview

21 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Static Multiple Issue

• Compiler groups instructions into issue packets

• Must understand what resources are available

• Must avoid creating hazards with-in a packet

• Must work to avoid any hazards between packets
• Some may be avoided by the HW – eg. forwarding

• Pad the packets with NOPs when all else fails

• Looks like a VLIW pipeline
• add2 $1, $2, $3, $4 ; $1 = $1 + $2, $3 = $3 +$4

• ador $1, $2, $3, $4 ; $1 = $1 + $2, $3 = $3 or $4

Multiple Issue

22 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Static Dual Issue

• Two execution paths
• Two issue packets

• ALU/branch path

• Load/Store path

• Pad with nop if one or the other cannot be issued

Multiple Issue

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch nop nop nop nop nop

n + 20 Load/store IF ID EX MEM WB

23 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Static Dual Issue

Multiple Issue

Dedicated to L/S

24 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Static Dual Issue - example

** 5 instructions complete in 4 clock cycles  IPC=1.25 vs. theoretical IPC = 2

Also note – data hazard space is doubled

Multiple Issue

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

25 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Static Dual Issue – loop unrolling

• Replicate the loop body to allow for additional parallelism
• Reduces loop overhead

• Increases code size

• Requires register renaming
• Use different registers for each un-rolled iteration

• Requires enough additional registers to avoid aliasing the values
• called name dependence

Multiple Issue

26 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Static Dual Issue – example with loop unrolling

** 14 instructions complete in 8 clock cycles  IPC=1.75 vs. theoretical IPC = 2

Multiple Issue

Loop: lw $t0, 0($s1) # $t0=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

27 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Dynamic Multiple Issue – (superscalar)

• CPU can execute instructions “out of order”

• CPU decides how many instructions to issue
• limited by resources

• avoid hazards

• Must “commit” results in order

• Compiler can help make the job easier

Multiple Issue

28 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Dynamic Multiple Issue

• Consider

lw $t0, 20($s2)

addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

• addu must wait for the lw to complete
• our hazard correction can’t fix this

• sub has no dependencies so it can be issued in parallel with the lw

Multiple Issue

29 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Dynamic Multiple Issue

• In order issue
• keeps dependencies in line

• Reservation station
• Holds instruction until all dependencies are available

• Functional Units
• Execution units

• May be duplicates

• Commit
• Hold on to any writes ready before the appropriate time

• pending earlier instructions that were scheduled later

Multiple Issue

30 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Dynamic Multiple Issue

Multiple Issue

31 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Dynamic Multiple Issue – register renaming

Multiple Issue

Once the instruction is in the reservation
station
-- available operands are copied and

register is freed
-- unavailable operands are tracked to

their pending execution unit and
register is freed

If the waiting value is only needed in the
reservation station
-- WB is cancelled and register is freed

32 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Dynamic Multiple Issue – speculation

• Branches
• Predict branch direction but don’t commit until result is known

• Loads
• Especially important once we start dealing with real memories (caches)

• Predict the effective address

• Load the value before completing waiting stores

• Don’t commit until the prediction result is known

Multiple Issue

33 © tjELE 455/555 – Spring 2016

Instruction Level Parallelism

• Cortex A8

Putting it all together

5 stages to detect and avoid hazards, create packets

aggressive address (branch) prediction
address generation, branch table, history buffer,
return stack

gives decoder lots of options

full bypassing of dependencies

can come from either issue

must come from specified issue

6 stages EX WB

