
ELE 455/555

Computer System Engineering

Section 3 – Memory

Class 2 – Cache Operation

2 © tjELE 455/555 – Spring 2016

Cache Basics

• Memory Hierarchy Considerations

• Typical System

Registers

Cache (SRAM)

Main Memory (DRAM)

Storage (HDD or Flash)

• Advanced systems may have 2,3,4 levels of cache
• Each is progressively slower and larger

• Size is targeted at holding entire applications

Memory Hierarchy

3 © tjELE 455/555 – Spring 2016

Cache Basics

• Cache Overview

• Closest memory to the CPU

• SRAM
• Fast

• Not too large (Kbytes)

• Must MAP a larger address space into a small memory
• Direct Mapped

• Set Associative

Cache Memory

4 © tjELE 455/555 – Spring 2016

Cache Basics

• Direct Mapped Cache

• Every higher level memory location is mapped to a single cache

memory location

Cache Memory

5 © tjELE 455/555 – Spring 2016

Cache Basics

• Direct Mapped Cache

• Cache size is built to be a power of 2

• Cache block =

(Block Address) mod (# of cache blocks)

• Eg. Assume a 256 block cache

Where does the memory block from address 0x2A3F map to?

0x2A3F mod 25610 = 0x3F = 6310

• As long as we follow this convention (cache size = 2n)

• Cache block address = last n bits of the memory address*

* for 1 byte block sizes

Cache Memory

6 © tjELE 455/555 – Spring 2016

Cache Basics

• Direct Mapped Cache
• 8 block cache, 1byte/block, 16 bit address space

Cache Memory

Index Valid Tag Data (1 byte)
0

1

2

3

4

5

6

7

15 14 … 4 3 2 1 0

1 0 0 1 1 0 1 16 bit address

8 Block Cache

Index
Tag

13 3

7 © tjELE 455/555 – Spring 2016

Cache Basics

• Direct Mapped Cache
• 8 block cache - Write

Cache Memory

Index Valid Tag Data (1 byte)
0

1

2

3

4

5 1 Data A

6

7

1 0 … 0 1

15 14 … 4 3 2 1 0

1 0 0 1 1 0 1 16 bit address

8 Block Cache

IndexTag

Data Bus

8

8 © tjELE 455/555 – Spring 2016

Cache Basics

• Direct Mapped Cache
• 8 block cache - Read

Cache Memory

Index Valid Tag Data (1 byte)
0

1

2 1 Data C

3 1 Data B

4

5 1 Data A

6

7 1 Data E

0 1 … 0 1

1 0 … 1 1

1 0 … 0 1

1 0 … 0 1

15 14 … 4 3 2 1 0

1 0 0 1 1 0 1 16 bit address

8 Block Cache

IndexTag

Data Bus

8

=
Hit

9 © tjELE 455/555 – Spring 2016

Cache Basics

• Direct Mapped Cache
• 1K block cache, 1 word block, 32 bit data word, 32 bit address space

Cache Memory

Index Valid Tag Data (4 bytes)
0

1

2

…

…

1021

1022

1023

31 … 13 12 11 … 2 1 0
32 bit address

1K Block Cache

IndexTag

Data Bus

32

=
Hit

20 10
Byte

Offset

10 © tjELE 455/555 – Spring 2016

Cache Basics

• Direct Mapped Cache

• Large block sizes  reduced miss rate
• Due to spatial locality

• Assuming a fixed cache size
• Larger blocks  fewer blocks  higher miss rate

Cache Memory

11 © tjELE 455/555 – Spring 2016

Cache Basics

• Direct Mapped Cache

• Larger Cache  reduced miss rate

 slower access

Cache Memory

12 © tjELE 455/555 – Spring 2016

Cache Basics

• Cache Read Miss - Program Memory

• On a miss we do not have the requested program memory value

available (current instruction)

• In the mean time the PC has incremented (+4 for MIPS)

• We must stall the processor while we wait for the instruction

Cache Read

13 © tjELE 455/555 – Spring 2016

Cache Basics

• Cache Read Miss - Program Memory

• Actually have 2 control circuits (controllers)
• Processor controller

• Memory controller
• Separate due to timing and latencies associated with the memory

• Processor control will stall the processor
• Wait for a signal to restart

• Memory controller
• Sends the original program memory address to memory with a read

request (current PC - 4)

• When available: write data, tag, and valid bit in cache

• Signal the processor to restart at the fetch stage

Cache Read

14 © tjELE 455/555 – Spring 2016

Cache Basics

• Cache Read Miss – Data Memory

• On a miss we do not have the requested data memory value

available (cannot complete the instruction - Load)

• We must stall the processor while we wait for the data

Cache Read

15 © tjELE 455/555 – Spring 2016

Cache Basics

• Cache Read Miss - Data Memory

• Actually have 2 control circuits (controllers)
• Processor controller

• Memory controller
• Separate due to timing and latencies associated with the memory

• Processor Control will stall the processor
• Wait for a signal to restart

• Memory controller
• Sends the original data memory address to memory with a read request

• When available: write data, tag, and valid bit in cache

• Signal the Processor to restart with the memory read

Cache Read

16 © tjELE 455/555 – Spring 2016

Cache Basics

• Memory Consistency

• Our memory hierarchy needs to remain

consistent
• All levels must contain the same value for

a given memory location

• If not – which is right?

• Not a problem for reads

• Can be a problem for writes

Cache Write

17 © tjELE 455/555 – Spring 2016

Cache Basics

• Write-through

• Simple approach to ensure memory consistency

• Every write to the cache  write to main memory

• Write Miss
• The desired memory value is not in the cache

• Read the desired memory value from main memory

• Write it into the cache

• Modify it (since this was started with a write instruction to begin with)

• Write a copy back to main memory

Cache Write

18 © tjELE 455/555 – Spring 2016

Cache Basics

• Write-through

• Simple approach – but very inefficient

• Every write to the cache  write to main memory

• Main memory writes are very slow (why we have a hierarchy)

• Example
• Main memory clock cycles/write = 100

• 1% of instructions are stores

• No-cache CPI = 1

1% of instructions will take 100 clock cycles

New CPI = 1 + 1 = 2 clocks/instruction

All that work to reduce the CPI has been foiled!

Cache Write

19 © tjELE 455/555 – Spring 2016

Cache Basics

• Write-through

• Partial fix

• Create a write buffer
• Holds the write value while the processor goes on to the next instruction

• Works as long as the rate of writes from the processor does not exceed

the buffers capability to store data

• Example – 1 word write buffer
• Main memory clock cycles/write = 100

• 1% of instructions are stores

• No-cache CPI = 1

1% of instructions will take 100 clock cycles – but will be stored in the write

buffer – allowing the CPU to continue

CPI = 1

Cache Write

20 © tjELE 455/555 – Spring 2016

Cache Basics

• Write-through

• Partial fix – complication

• Even though the overall % of writes is small enough to allow the

write buffer to work – If the writes are “bursty” – the buffer will be

overwhelmed and the processor will stall

• Leads to deep write buffers

Cache Write

21 © tjELE 455/555 – Spring 2016

Cache Basics

• Write-through

• Alternative approaches within the write-through process

• Allocate a specific block for write misses in the cache
• On miss – read the value from main memory and place it in a special

block of the cache

• Called - write allocate

• Make changes

• Write the value back into memory

• Assumes you likely will not reuse the value soon

• Don’t load the block into cache at all
• Write the value directly to memory

• Also assumes you will not reuse the block soon

• Typical for zeroing out a page of memory

• Called - no write allocate

Cache Write

22 © tjELE 455/555 – Spring 2016

Cache Basics

• Write-Back

• Alternative to write-through

• Only write back to main memory when the cache block is being

replaced
• And only when it is “dirty”, i.e. been changed

• Provides a similar performance advantage as the cache read

process
• 10% of instructions are writes but only 10% are cache misses, leading to

a write-back rate of 1%

Cache Write

23 © tjELE 455/555 – Spring 2016

Cache Basics

• Write-back vs. Write-through

• Write-through
• Can write to the cache and determine if there is a miss at the same time

• If hit – write is OK

• If miss – no harm since the value over-written has already been stored in

memory

• Process moves forward as usual – but only replacing the parts of the block

that were not just overwritten

• All writes can occur in 1 clock cycle

• Write-back
• Must write the block back to memory on a miss (and dirty)

• 2 clock cycles: one to determine hit or miss, one to initiate write back on

misses

• Or use a write buffer to pipeline the process  1 clock cycle

• Or use a store buffer to hold the stored value while the write-back occurs

then updates the cache on the next available cache write cycle

Cache Write

24 © tjELE 455/555 – Spring 2016

Cache Basics

• Intrinsity FastMATH Processor

• Embedded MIPS processor
• 12-stage pipeline
• Instruction and data access on each cycle

• Split cache: separate I-cache and D-cache
• Each 16KB: 256 blocks × 16 words/block
• D-cache: write-through or write-back

• SPEC2000 miss rates
• I-cache: 0.4%
• D-cache: 11.4%
• Weighted average: 3.2%

Cache Example

25 © tjELE 455/555 – Spring 2016

Cache Basics

• Intrinsity FastMATH Processor

• Read
• Send requested address to cache

• Instruction or data

• Hit
• Data available
• Must select from the 16 possible words in the block
• Block offset field is used – addr[5:2]

• Miss
• Send address to main memory
• When available – update the cache
• Continue normal operation – read value from cache

• Write
• Has both write-through and write back options
• OS determines which to use

• based on instruction usage by each application

Cache Example

26 © tjELE 455/555 – Spring 2016

Cache Basics

• Intrinsity FastMATH Processor

Cache Example

256 Blocks
16 words / block
32 bits / word

27 © tjELE 455/555 – Spring 2016

Cache Basics

• Split vs. Single Cache

• Single cache to support I and D
• Larger (same as 2 together)  better hit rate

• Allows more flexibility for how much is data and how much is instruction
• consider a small program operating on a lot of data vs. a big program using almost

no data

• Split I and D cache
• Allows for concurrent I and D access – 2x bandwidth

• Far outweighs the flexibility advantage of a combined cache

Cache Configuration

Split Cache Combined Cache

Miss Rate Miss Rate

32KB 3.24% 3.18%

Cache Size

