ELE 455/555
Computer System Engineering

Section 3 — Memory
Class 2 — Cache Operation

B A N9 ll 11

s Y

2Nl N

 Memory Hierarchy Considerations

« Typical System op

. Increasing distance
Registers /\ fom the CPU I
access time
Levels in the / Level 2 \
memory hierarchy

Cache (SRAM) / \

Main Memory (DRAM) / o N

Size of the memory at each level

Storage (HDD or Flash)

« Advanced systems may have 2,3,4 levels of cache
« Each is progressively slower and larger
» Size is targeted at holding entire applications

ELE 455/555 — Spring 2016 2 © tj

BAsesindeitiiido

s 5 @

€|
« Cache Overview

» Closest memory to the CPU

« SRAM

* Fast
* Not too large (Kbytes)

 Must MAP a larger address space into a small memory
» Direct Mapped
« Set Associative

ELE 455/555 — Spring 2016 < © tj

.“b.‘ IS N | ! - ; - ~u»000.0‘\‘.o

O o w9
. .

s Y9 2 Aty B i, o

W4 3 (f
- “ é'°_
B

ache Memory
 Direct Mapped Cache

« Every higher level memory location is mapped to a single cache
memory location

Cache

000
001
010
011
100
101
110
111

=
> o

%

00001 00101 01001 01101 10001 10101 11001 11101
Memory

ELE 455/555 — Spring 2016 4 © tj

Direct Mapped Cache

« Cache size is built to be a power of 2
: / \ s

i CaChe bIOCk 3 00001 00101 01001 01101 10001 10101 11001 11101
(Block Address) mod (# of cache blocks)

« Eg. Assume a 256 block cache
Where does the memory block from address 0x2A3F map to?

Ox2A3F mod 256,,= 0x3F = 63,,
« As long as we follow this convention (cache size = 2")

 Cache block address = last n bits of the memory address*

*for 1 byte block sizes
ELE 455/555 — Spring 2016 5 © tj

B . e
a . .
5asICS
)
QA
.
"

- \ \ 1 A} ~
1e Memor

 Direct Mapped Cache
» 8 block cache, 1lbyte/block, 16 bit address space

'S W W ey =Y
1 0 0h s 8t 4’ 01 16 bit address

%13 Index :| 3
Tag

8 Block Cache
Index Valid Tag Data (1 byte)
0
1
2
3
4
é 5
6
7

ELE 455/555 — Spring 2016 6 © tj

eI ™

) [

‘ »
)

 Direct Mapped Cache
» 8 block cache - Write

St i e P B e
1 0 o s 2t 5 16 bit address Data Bus
Tag Index \ e
8 Block Cache
Index Valid Tag Data (1 byte)
0
1
2
3
4
y ks LY S0 S8 BT Data A S
_/6///'
7

ELE 455/555 — Spring 2016 7 © tj

'\--. - -
‘AR .
v - oc'\»"l“ Ac¢
5 -~
- | N - N . ‘
‘ . “ L é

BANe) " ' - y ' Jl' | - Iy I
- : :
:
)

: ‘ 2 gy?.

(L ,
H. 1 q"‘i tvu ?f] m.li . ‘E‘ o mo:o

Direct Mapped Cache
» 8 block cache - Read

413 gl 11 o £ ¥ T2 IR0
1 0 ™ 16 bit address Data Bus
Tag Index \ e
8 Block Cache
Index Valid Tag Data (1 byte)
0
1
2 1 Orgr= s Op' Data C
3 —1{ 10 .. 11 Data B
.) 4 4 \
Hit _(_@ — LRI T Data A —
—([:
1 1 0F o 2 SRaCh] Data E

ELE 455/555 — Spring 2016 8 Ot

Direct Mapped Cache
» 1K block cache, 1 word block, 32 bit data word, 32 bit address space

31

.13 12 11 B 12

T U

Tag

Hit

1

20

ELE 455/555 — Spring 2016

Index |10

Index

Byte
Offset

Valid

oy ﬂnh

- | | m

32 bit address

1K Block Cache
Tag

Data Bus

A

Y

Data (4 bytes)

A

32

©tj

AN T

s .

 Direct Mapped Cache

« Large block sizes - reduced miss rate
* Due to spatial locality

» Assuming a fixed cache size
» Larger blocks - fewer blocks = higher miss rate

10%

L

Miss

5 b e enetaeenatateneene e nate e s e ae s eyt an e eaa e e n s e aea e e e n e e e e an e aenan
rate
<
\ / 16K
L — & <
(\
Y —— 0 -0 o 64K
R A
0% ; " - * 256K
16 32 64 128 256
Block size

ELE 455/555 — Spring 2016 10 © tj

‘\-.J"“. ‘-.d‘

. g "

 Direct Mapped Cache

« Larger Cache - reduced miss rate
—> slower access

10%
4K
L

--

(\
v . —O— O o 64K
0% . . . A 256K
16 32 64 128 256

Block size

ELE 455/555 — Spring 2016 11 © tj

B A N9 ll 11

v o "-‘?.,'fj..-
| 'o

R

- r ~vl“_. ! N —
‘ZL"bu:‘ i ‘E‘ o

« Cache Read Miss - Program Memory

« On a miss we do not have the requested program memory value
available (current instruction)

* In the mean time the PC has incremented (+4 for MIPS)

* We must stall the processor while we wait for the instruction

ELE 455/555 — Spring 2016 12 Ot

il ANy "V' f o™ \ ' . A L AT

g -

0"f’0ﬁ¥““

Cache Read Miss - Program Memory

« Actually have 2 control circuits (controllers)
* Processor controller

 Memory controller
» Separate due to timing and latencies associated with the memory

» Processor control will stall the processor
« Wait for a signal to restart

* Memory controller
« Sends the original program memory address to memory with a read
request (current PC - 4)
 When available: write data, tag, and valid bit in cache
« Signal the processor to restart at the fetch stage

ELE 455/555 — Spring 2016 13 © tj

ARA N e 1A

« Cache Read Miss — Data Memory

* On a miss we do not have the requested data memory value
available (cannot complete the instruction - Load)

* We must stall the processor while we wait for the data

ELE 455/555 — Spring 2016 14 © tj

Alai 11 ST Tl |
.

- B .
O.‘,“.. ..‘~.' .-.

« Cache Read Miss - Data Memory

« Actually have 2 control circuits (controllers)
* Processor controller

 Memory controller
« Separate due to timing and latencies associated with the memory

» Processor Control will stall the processor
« Wait for a signal to restart

« Memory controller
« Sends the original data memory address to memory with a read request
 When available: write data, tag, and valid bit in cache
« Signal the Processor to restart with the memory read

ELE 455/555 — Spring 2016 15 © tj

BAsesindiitiio

« Memory Consistency I
« Our memory hierarchy needs to remain /\ o GrLlin.
consistent otsimve /N
. All levels must contain the same value for ™ \
a given memory location
« If not — which is right? / e \

Size of the memory at each level

* Not a problem for reads
« Can be a problem for writes

ELE 455/555 — Spring 2016 16 ©tj

- *.
- -
- a B
A DAaciy
C "A)1\ S

:
"

: 4

~Ne r“ agra?‘
‘ ™ ¢

« Write-through

« Simple approach to ensure memory consistency
« Every write to the cache - write to main memory

» Write Miss
» The desired memory value is not in the cache

* Read the desired memory value from main memory

« Write it into the cache

» Modify it (since this was started with a write instruction to begin with)
« Write a copy back to main memory

ELE 455/555 — Spring 2016 17 ©tj

- *.
- -
- a B
A DAaciy
C "A)1\ S

:
"

: 4

Cache Write
« Write-through

Simple approach — but very inefficient

Every write to the cache - write to main memory
Main memory writes are very slow (why we have a hierarchy)

Example
« Main memory clock cycles/write = 100
» 1% of instructions are stores
 No-cache CPI =1

1% of instructions will take 100 clock cycles

New CPIl =1 + 1 = 2 clocks/instruction
All that work to reduce the CPI has been foiled!

ELE 455/555 — Spring 2016 18 © tj

Alai 11 ST Tl |
.

- B .
O.‘,“.. ..‘~.' .-.

« Write-through

o Partial fix

» Create a write buffer
* Holds the write value while the processor goes on to the next instruction
* Works as long as the rate of writes from the processor does not exceed
the buffers capability to store data

« Example — 1 word write buffer
* Main memory clock cycles/write = 100
» 1% of instructions are stores
 No-cache CPI =1

1% of instructions will take 100 clock cycles — but will be stored in the write
buffer — allowing the CPU to continue

CPI=1

ELE 455/555 — Spring 2016 " © tj

AN T

« Write-through
 Partial fix — complication
« Even though the overall % of writes is small enough to allow the
write buffer to work — If the writes are “bursty” — the buffer will be

overwhelmed and the processor will stall

» Leads to deep write buffers

ELE 455/555 — Spring 2016 20 © tj

i

\iA 1 ®Ra d v'\, | yese) ' Niateih

- — - ’ - ’
. ﬁ u. .‘- ‘.. " ...0_. e ‘

"'.,'ﬂ;Aq z,:" . . ! ' "" ‘no‘r

Al B

" 5 .‘.

\

lJ . é:"') y : " ‘ 0'
e \Write . : I B Fanin
. |‘t 1te | ‘ r g

M ‘el

« Write-through

 Alternative approaches within the write-through process

» Allocate a specific block for write misses in the cache

On miss — read the value from main memory and place it in a special
block of the cache

Called - write allocate

Make changes

Write the value back into memory

Assumes you likely will not reuse the value soon

Don’t load the block into cache at all
Write the value directly to memory

» Also assumes you will not reuse the block soon
» Typical for zeroing out a page of memory

Called - no write allocate

e 455/555 Sprlng 2016

LA Y

.,.c°

No‘.

©tj

g

gy | 00"0

\ C /) b | | v —
> VI ' — PRy Ll

 Write-Back

 Alternative to write-through

* Only write back to main memory when the cache block is being

replaced
* And only when it is “dirty”, i.e. been changed

* Provides a similar performance advantage as the cache read

process
* 10% of instructions are writes but only 10% are cache misses, leading to
a write-back rate of 1%

ELE 455/555 — Spring 2016 22 Ot

hesbdlaine "" | Y321) ' VAL IA Vbiee

Er - 21 "o.’

"'..\'”;Q‘F‘I’:O’ '. s .0 X 'ﬂ ‘"05"

4
Y
l/,o‘l, IAAO 1L

: .
-~ Cache Write |
) —a e |

'." B

« Write-back vs. Write-through

« Write-through
« Can write to the cache and determine if there is a miss at the same time

* If hit — write is OK

* |If miss — no harm since the value over-written has already been stored in

memory
* Process moves forward as usual — but only replacing the parts of the block
that were not just overwritten
« All writes can occur in 1 clock cycle

» Write-back
* Must write the block back to memory on a miss (and dirty)
» 2 clock cycles: one to determine hit or miss, one to initiate write back on
misses
» Or use a write buffer to pipeline the process - 1 clock cycle
» Or use a store buffer to hold the stored value while the write-back occurs
then updates the cache on the next available cache write cycle

ELE 455/555 — Spring 2016 23 © tj

Iy ™

“
»

.
-

‘ .. ‘ : "‘; L' ‘ ‘.:l | m:‘l(- :

* Intrinsity FastMATH Processor

« Embedded MIPS processor
« 12-stage pipeline
 Instruction and data access on each cycle

» Split cache: separate I-cache and D-cache
« Each 16KB: 256 blocks x 16 words/block
» D-cache: write-through or write-back

« SPEC2000 miss rates
* |-cache: 0.4%
 D-cache: 11.4%
* Weighted average: 3.2%

ELE 455/555 — Spring 2016 24 © tj

B ANl i
— w\-o

b 0 AahA D
E 1T D

_3."8
’

3 s WLt

—ry

CacheExample ~ =

Intrinsity FastMATH Processor

 Read
» Send requested address to cache
* Instruction or data
« Hit
« Data available

* Must select from the 16 possible words in the block
» Block offset field is used — addr[5:2]
« Miss
* Send address to main memory
* When available — update the cache
« Continue normal operation — read value from cache

« Write
« Has both write-through and write back options

« OS determines which to use
» Dbased on instruction usage by each application

ELE 455/555 — Spring 2016 25 © tj

“.uautu....a-‘

woRIiiIl . oy . . - :
=Y :
A BN N
* Intrinsity FastMATH Processor 256 Blocks
Address (showing bit positions) 16 words / block
31 - 1413---65--:210 <% bitS/WOI‘d
I-‘Ikit Tag 418 J8 44 cl%}lstgt Data
Index Block offset
18 bits 512 bits ‘
V Tag Data
256
? entries
s 432 32 32
PL
(Mux_>
32

ELE 455/555 — Spring 2016 26 Ot

il ANy "V' TR i " IR L I

1
: :
:

L s i
- . | .‘,‘... " S N .
= AT e
‘ .. : ‘ .." 0' ! . "' .
-.-:n ‘“.‘.) .;. | B
, Q .' - |“]
]

T3k
r "‘
.-4.zv"" AT AP Y

s-.
.
-

0"f’0ﬁ¥““ ,
2 4 { é

’ ‘J"o

", A1CNE S’Y W'tu' |
Split vs. Single Cache

» Single cache to support | and D

« Larger (same as 2 together) - better hit rate
» Allows more flexibility for how much is data and how much is instruction
* consider a small program operating on a lot of data vs. a big program using almost

no data
Cache Size Sp|'lt Cache Comb.med Cache
Miss Rate Miss Rate
32KB 3.24% 3.18%

« Split I and D cache
« Allows for concurrent | and D access — 2x bandwidth
» Far outweighs the flexibility advantage of a combined cache

ELE 455/555 — Spring 2016 27 © tj

