
ELE 455/555

Computer System Engineering

Section 3 – Memory

Class 3 – Cache Performance

2 © tjELE 455/555 – Spring 2016

Cache Basics

• Direct Mapped Cache
• 8 block cache - Read

Cache Memory

Index Valid Tag Data (1 byte)
0

1

2 1 Data C

3 1 Data B

4

5 1 Data A

6

7 1 Data E

0 1 … 0 1

1 0 … 1 1

1 0 … 0 1

1 0 … 0 1

15 14 … 4 3 2 1 0

1 0 0 1 1 0 1 16 bit address

8 Block Cache

IndexTag

Data Bus

8

=
Hit

3 © tjELE 455/555 – Spring 2016

Cache Basics

• Intrinsity FastMATH Processor

Cache Example

4 © tjELE 455/555 – Spring 2016

Cache Performance

• CPU performance

• CPU Time
• Clock Cycle Time x (CPU execution cycles + CPU stall cycles)

• CPU Stall Cycles
• Hazard stall cycles + Read stall cycles + Write stall cycles

• let Hazard stall cycles go to zero with various techniques

• CPU stall cycles = Memory stall cycles = Read stall cycles + Write stall

cycles

Measurement

5 © tjELE 455/555 – Spring 2016

Cache Performance

• CPU performance

• Read Stall Cycles
• Stalls due to read misses

• Read stall cycles =
Reads

Program
× Read miss rate × Read miss penalty

Measurement

6 © tjELE 455/555 – Spring 2016

Cache Performance

• CPU performance

• Write Stall Cycles (write through)
• Stalls due to write misses

and

• Write buffer stalls (buffer full)

• Write stall cycles =
Writes

Program
×Write miss rate ×Write miss penalty

+ Write buffer stalls

• Design our system to make Write buffer stalls negligible
• Fast L2 memory

• Deep write buffer

• Write stall cycles =
Writes

Program
×Write miss rate ×Write miss penalty

Measurement

7 © tjELE 455/555 – Spring 2016

Cache Performance

• CPU performance

• Read and Write miss penalty is the same

• In both cases the penalty is the time to read the value from memory

• Define a Miss Rate which measures the miss rate for memory

accesses – read or write

• Memory stall cycles =
Memory Accesses

Program
×Miss rate × Miss penalty

or

• Memory stall cycles =
Instructions

Program
×

Misses

Instruction
×Miss penalty

Measurement

8 © tjELE 455/555 – Spring 2016

Cache Performance

• CPU performance - example

CPIideal = 2

2% instruction miss rate

4% data miss rate

100 cycle miss penalty

36% of instructions are Loads or Stores

Instruction Miss Cycles = Icount x 2%miss/inst x 100cycles/miss

= 2 x Icount

Data Miss Cycles = Icount x 36%LS/inst x 4%miss/LS x

100cycles/miss

= 1.44 x Icount

Measurement

9 © tjELE 455/555 – Spring 2016

Cache Performance

• CPU performance – example cont’d

Memory Stall Cycles = 2 Icount + 1.44 Icount = 3.44 Icount

This is almost 3.5 stalls per instruction !!!

CPI = CPIideal + 3.44 clocks/inst = 5.44 clocks/inst

Only achieving 37% of the ideal performance

Measurement

10 © tjELE 455/555 – Spring 2016

Cache Performance

• CPU performance – example cont’d

If we improve the processor to a CPIideal = 1 (better pipeline)

CPI = CPIideal + 3.44 clocks/inst = 4.44 clocks/inst

This improves the performance – but not linearly

Only achieving 22.5% of the ideal performance

Measurement

11 © tjELE 455/555 – Spring 2016

Cache Performance

• CPU performance

• We have assumed a 1 clock cycle Hit time – this may or may not

be true

• Use the Average Memory Access Time to measure performance

• AMAT = Time for a hit + (Miss Rate x Miss penalty) seconds

or

AMAT = Clock cycle time x (Hit Cycles + Miss Rate x Miss Penalty)

Measurement

12 © tjELE 455/555 – Spring 2016

Cache Performance

• CPU performance - example

1GHz clock

1 cycle cache access time

5% miss rate

20 cycle miss penalty

AMAT = 1ns/clk x (1 clk/hit + 5% x 20clk/miss) = 2ns

Measurement

13 © tjELE 455/555 – Spring 2016

Cache Performance

• CPU performance

• Memory performance is critical to overall performance

• Impacts CPI

• Impacts AMAT

Measurement

14 © tjELE 455/555 – Spring 2016

Cache Performance

• Direct Mapped Cache

• Maps each memory location into a single cache location

Set Associative Cache

Block

15 © tjELE 455/555 – Spring 2016

Cache Performance

• Fully Associative Cache

• Maps each memory location to any cache block

Set Associative Cache

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

00001 00101 01001 01101 10001 10101 11001 11101

Cache

Memory

Block

16 © tjELE 455/555 – Spring 2016

Cache Performance

• Fully Associative Cache

• Maps each memory location to any cache block

• Reduces the number of mapping conflicts

• Reduces the number of Misses

but

• Very inefficient
• Increases total number of bits

• Must search each tag field
• Increases the amount of compare logic

Set Associative Cache

17 © tjELE 455/555 – Spring 2016

Cache Performance

• Fully Associative Cache
• 1K block cache, 32 bit word

Set Associative Cache

Index Valid Tag Data (4 bytes)
0

1

2

…

…

1021

1022

1023

32 31 … 13 12 11 … 2 1 0
32 bit address

1K Block Cache

Tag

Data Bus

32

=
Hit

30
Byte

Offset

x 1024

18 © tjELE 455/555 – Spring 2016

Cache Performance

• Set Associative Cache

• Maps each memory location to a limited number of blocks

Set Associative Cache

00010 00100 01010 01100 10010 10100 11010 11100

00 01 10 11

Cache

Memory

Set

19 © tjELE 455/555 – Spring 2016

Cache Performance

• Set Associative Cache

• M block, N-way Set Associative Cache

• N-way  each set consists of N blocks

• M block  total number of blocks is M

• 64 block, 2-way set associative cache

• 32 sets of 2 blocks

• Each memory location can be mapped to 2 blocks

• There are 32 mapping groups

Set Associative Cache

20 © tjELE 455/555 – Spring 2016

Cache Performance

• Cache Comparison

• 64 Block Cache

• Direct Mapped
• block location = (block number) modulo (# of blocks)

• 1000 mod 64 = block 40

• 2-way Set Associative
• set location = (block number) modulo (# of sets)

• 1000 mod 32 = set 8

• Fully Associative
• looks like a 64-way set associative cache  1 set

• 1000 mod 1 = set 0

Set Associative Cache

21 © tjELE 455/555 – Spring 2016

Cache Performance

• Cache Comparison

• 8 Block Cache

Set Associative Cache

22 © tjELE 455/555 – Spring 2016

Cache Performance

• Cache Comparison

• 4 Block Cache – address sequence = 0,8,0,6,8

• Direct Mapped

Set Associative Cache

Block Address Cache Block

0 0 mod 4 = 0

6 6 mod 4 = 2

8 8 mod 4 = 0

0 1 2 3

0 miss mem[0]

8 miss mem[8]

0 miss mem[0]

6 miss mem[0] mem[6]

8 miss mem[8] mem[6]

Contents of Cache after referenceAddress of memory

block addressed

Hit

or Miss

5 accesses
5 misses

23 © tjELE 455/555 – Spring 2016

Cache Performance

• Cache Comparison

• 4 Block Cache – address sequence = 0,8,0,6,8

• 2-way Set Associative

Set Associative Cache

Block Address Cache Block

0 0 mod 2 = 0

6 6 mod 2 = 0

8 8 mod 2 = 0

0 miss mem[0]

8 miss mem[0] mem[8]

0 hit mem[0] mem[8]

6 miss mem[0] mem[6]*

8 miss mem[8]* mem[6]

Contents of Cache after referenceAddress of memory

block addressed

Hit

or Miss Set 0 Set 1

5 accesses
4 misses

* least recently used block

24 © tjELE 455/555 – Spring 2016

Cache Performance

• Cache Comparison

• 4 Block Cache – address sequence = 0,8,0,6,8

• Fully Associative

Set Associative Cache

Block Address Cache Set

0 0 mod 1 = 0

6 6 mod 1 = 0

8 8 mod 1 = 0

0 miss mem[0]

8 miss mem[0] mem[8]

0 hit mem[0] mem[8]

6 miss mem[0] mem[8] mem[6]

8 hit mem[0] mem[8] mem[6]

Contents of Cache after referenceAddress of memory

block addressed

Hit

or Miss Set 0

5 accesses
3 misses

25 © tjELE 455/555 – Spring 2016

Cache Performance

• Cache Comparison

• As associativity increases:

• Hit rate goes up

• Complexity goes up
• Cost

• Usually leads to slow down

• SPEC2000 benchmarks – 64KB Cache, 16 word block

Set Associative Cache

26 © tjELE 455/555 – Spring 2016

Cache Performance

• Cache Implementation

Set Associative Cache

What configuration is this cache?

27 © tjELE 455/555 – Spring 2016

Cache Performance

• Cache Implementation

Set Associative Cache

What configuration is this cache?
256 x 4 blocks = 1K Block, 4 way
4 bytes/block  4KByte, 4 way

28 © tjELE 455/555 – Spring 2016

Cache Performance

• Replacement Policies

• Set associativity introduces the need to choose which block to

replace

• Random
• Implement pseudo-random block selection with-in a set

• Least Recently Used (LRU)
• Leverages temporal locality

• First-in, first-out (FIFO)
• Replace the oldest block

• Simpler than LRU but frequently results in similar performance

Set Associative Cache

29 © tjELE 455/555 – Spring 2016

Cache Performance

• Replacement Policies

• Data Cache Misses
• 1000 instructions, SPEC2000, Alpha Architecture

Set Associative Cache

src. Computer Architecture, Hennessy and Patterson, 5th ed.

30 © tjELE 455/555 – Spring 2016

Cache Performance

• Performance Review

• Bigger cache  fewer misses

• LRU < FIFO < Random - but differences small

• Associativity reduces misses for smaller caches – but diminishing

• For large caches, associativity becomes less important

Set Associative Cache

src. Computer Architecture, Hennessy and Patterson, 5th ed.

Data misses / 1000 instructions

31 © tjELE 455/555 – Spring 2016

Cache Performance

• Single level Cache Issues

• Cache miss penalties are very high when a miss goes to main

memory
• Many stall cycles

• Large caches are slower
• Slowing down the processor

 Multi-level Cache

Multi-level Caches

32 © tjELE 455/555 – Spring 2016

Cache Performance

• Multi-level Cache

• 2 on chip Caches
• Smaller – L1 cache

• Larger – L2 cache

• L1
• Targeted at allowing the processor to run as fast as possible

• Focus is on hits
• Fewer ways

• smaller blocks

• L2
• Targeted at reducing the number of main memory accesses

• Focus is on misses
• More ways

• bigger blocks

Multi-level Caches

33 © tjELE 455/555 – Spring 2016

Cache Performance

• Multi-level Cache

• Local Miss Rate
• misses / access – for each cache level

• Miss rateL1, Miss rateL2

• Global Miss Rate
• misses / processor accesses

• Global miss rateL1 = Local miss rateL1

• Global miss rateL2 = Local miss rateL1 x Local miss rateL2

Multi-level Caches

