ELE 455/555
Computer System Engineering

Section 3 — Memory
Class 4 — Virtual Memory

—ub“ - ' 291 . . ' 23 Niatei b A TTTIr !

-—

-of‘_-cf‘\r‘cx

* Virtual Machine

« Host computer emulates guest operating system and machine
resources
» Improved isolation of multiple guests
» Avoids security and reliability problems
» Aids sharing of resources

 Virtualization has a performance impact
» Feasible with modern high-performance computers

 Examples

* IBM VM/370 (1970s technology!)
« VMWare

* Microsoft Virtual PC

* Cloud computing

ELE 455/555 — Spring 2016 2 © tj

T I
O o w9
o"‘_"f‘\r"(l" A

.
\ | - t
|) ’

| 9
I / 7-, 'B ;1 S
« System Virtual Machine

Virtualizes the entire computing experience
» Users believe they are running stand-alone

Can support multiple OSes

Share hardware resources

Supported by the virtual machine monitor (VMM)
» aka hypervisor

Hardware i1s called the host

VMs are called the guests

ELE 455/555 — Spring 2016 3 © tj

ANl 1
- @ o e

0"‘.'94"‘?.".:‘“ Tt’
C g .

-9
'
Virtual M Y-aﬁnl

« Amazon Web Services (AWS)

» Uses virtual machines in its web services to:

» Protect users from each other

* One guest image can be distributed to as many hosts as needed
« Can reliably “kill” a VM when done (security)

« Hides hardware — giving AWS flexibility in age, location, speed, ...

* Resource control and monitoring — can limit the resources available to
each guest

ELE 455/555 — Spring 2016 4 © tj

ANl 1

0"‘_'4f‘r°‘!l‘"

| /|
!

| 9
'
g . 01'7 DYZ "l'

 Virtual Memory

« Use main memory as a cache for secondary memory
» Typically HDD for PC systems, Flash for mobile systems

* Why?
» Allow multiple programs (VMs) to share a common memory
* Manage the limitations of main memory size

 How?
« Cache portions of the secondary memory in main memory
» Allows different programs to be resident in main memory with-in different
cache blocks (pages)

ELE 455/555 — Spring 2016 5 © tj

- wdBb ANl It L . g v VI W
* Powm ' B - - : ..‘.«.o .

~ Virtual Mer
l
(l lﬂ ?‘1’3‘7"6‘. ¥

 Virtual Memory

,‘._.‘ B . Yo
L : " * Pdii
;__'? -3 — ‘q ,, ' -‘ ?‘ T ny

- '50

f

 If we cache different programs into main memory we create an

addressing issue — processor uses the absolute address in main memory

 How does the processor know where specific parts of code get cached
to?

* The location can change each time the program is started

* The location can change if it gets swapped out and then back in again

« Each program gets its own address space
« This is a fictitious (virtual) address space
* Only the program can access its address space
« The address space is defined at compile time and does not change

* The processor must translate(through HW and SW) from this
“virtual address” to a physical address.

ELE 455/555 — Spring 2016 6 Ot

Steps for Loading a Process in Memory

Source
file 1

Object
module 1

Source
file 2

Assembler
or
Compiler

Object
module 2

Source
file 3

Linking: combine all the object
modules of a program into a
binary program image

ELE 455/555 — Spring 2016

Object
module 3

System
Library

static linking

—» Linker

Executable
binary file

(load module)

Process
image in
memory

\ System

dynamic linking

~«— Loader

Libra ry.

The Linking Function

L-1

Module A

CALLB

Return

Module B

CALLC

Return

Module C

Return

d

Object Modules

<

\ Lengthl

) Length M

\ Length N

ELE 455/555 — Spring 2016

Load Module

L+M-1
L+M

\ L+M+N-1

Module A

st IILII

Return

Module B

JSR “L+M”

Return

Module C

Return

A

m"'?"" TN 7 - uo«c Asbea

0.’ - !

“’”""T.‘{'\ ‘,}‘. sy I.‘. .'2.1?”,.,;(’.‘.'..'. ,

s oz il || 653 5 & Bede n

« Terminology

* Virtual Memory operates like a cache but some of the terms used
are different for historical reasons

« Address generated by the processor — virtual address
* Blocks used in the VM system are called Pages
* Misses in the VM system are called Page Faults

* Physical Memory — typically refers to main memory (DRAM)

« Address Translation — converting the virtual memory address created by
the processor to a physical memory address associated with the DRAM,
flash or disk

« Swap Space — a copy of all the virtual memory space (required by a

Process? on the HDD — makes flndlng unloaded pages easier (16GB)
ELE 455/555 — Spring 2016 © tj

NS SRR SV N, ' VAL IA Vbiee

..-- . ’ v..’
veo :

,‘Q‘nq"ﬂTa",-o 0' ‘ X ."L"""'r .
\ALR i1 o.. o'o ‘ ° . . .‘.! .

.;.b'-“w ﬂﬁq ‘c- | | r' "Q‘ N.I'

\ ..

* Address Translation
« Each program has its own virtual memory space

* When loading the program the processor will map the virtual
memory location loaded (used by the program) - into the
corresponding physical address actually used to store the

code/data
* Not all of the program need be loaded — only the pages needed

Pages are fixed in size (remember these are cache blocks)

Pages can be loaded into any main memory location the processor
chooses

ELE 455/555 — Spring 2016 10 © tj

o =

-‘AHQJ&‘QSl.C“ ' : - } - AT TYIY (1IN

o

3 . b g '.4 ' “0
- |

1lal Memc
' ;
ew

 Address Translation

.

v

]

BN
? e

INAT Ly

Disk addresses

" Virtual addresses Physical addresses
Virtual addresses — created \o% Address translation Physical addresses — The
by the compiler and used by F_\# actual location of blocks
the processor . o i
P e (pages) in memory or on
disk
\
.\
~——
. §

* Overly simplistic example

1234 --> dram 5463
1235 --> dram 7638
1236 --> hdd 1254
1456 --> dram 5281

ELE 455/555 — Spring 2016 il ©tj

‘\ ~.A.-“- Z.OAI.-

 Address Translation

Virtual address

3103020281278 LR L - 1514131211 1098 «+-ovvve-e- 3210

Virtual page number Page offset

Virtual address space = 4GB Page offset —the memory

location within a page
(Translation)

Physical address space = 1GB Page size = 212 = 4KB

20IoSio 7R T . I8, . 1514131211109 8 ---ebvee-- 3210

Physical page number Page offset

Physical address

ELE 455/555 — Spring 2016 12 © tj

.“b.‘ IS N | ! - ; - ~u»000.0‘\‘.o

- - -

 \N/ivtiial N/

-
L J

L..\‘ ',5..."
.

.
-

Overview

 Address Translation

« Each program (process) will have its own virtual memory space

Virtual address Virtual address Virtual address Virtual address
302928 302928 2111 30292827 -- 302928
‘ Virtual bes ‘ Page offset ‘ | Virtual ibe: ‘ Page offset ‘ | Virtual ibes ’ Page offset ‘ ‘ Virtual bes [Page offset
== = = ==
T TS 1514131211 1098 -} 3210 211 T SO 15141312111098 - 3210 21T RTSTe SO 1514131211 1088 oo 3210 292827 rree frernaesiiens 1514131211 1098 7
Physical page number ‘ Page offset ‘ ‘ Physical page number ‘ Page offset ‘ ‘ Physical page number ‘ Page offset ‘ ‘ Physical page number ‘ Page offset

ical addr eSS Physical address Physical address Physical address

4 : Only 1 physical memory
« But there is only 1 physical memory

 The VMM is responsible for physical memory management
» Protects programs from overwriting each other
» Allows programs to share

ELE 455/555 — Spring 2016 13 © tj

—ub“ " ' 291 . ., 23 Niatei b A TTTIr !
olf‘_'df‘\r‘ix ¢,"

Impleme i‘—a&x

Page Fault

» The processor addresses a given virtual address
 |f the address maps to the main memory — HIT
» |If the address maps to the secondary memory — Miss = page fault

« Page fault - requires a page to be read from secondary memory
« At 10ms access times (HDD) = 10M clock cycles to get the first byte

when running at 1GHz
* Need to transfer 4KB

« Must reduce page faults to the lowest possible value

ELE 455/555 — Spring 2016 14 © tj

eI ™

« Page Fault

» Approaches to reduce page fault impact

» Page size — large enough to capture large portions of the program
+ 4KB, 16KB typical — but growing
« 1KB for mobile — smaller aps

« Fully associative placement

« Use SW to manage page faults
« Small overhead compared to the delay of a miss
» Can be very sophisticated in placement and replacement

« Use write-back
* Only when necessary (dirty)

ELE 455/555 — Spring 2016 15 ©tj

. ANl e T _ - ~ a \u-«ut
~- \.-: 9 .Q.--

Virtual Memory | i‘t“".ff“'..‘«‘-

) !

__Imple .mf‘“ﬁu | dima - | AT N T
« Page Tables

« Remember — fully associative placement is costly due to the time
and circuitry needed to find the block (page) you are looking for

* VM uses the existing memory addressing/decoding capability built

Into main memory

« Each program (process) is allocated a space in main memory to place
the address translation information for that process — Page Table

» The processor includes a register to point to the location of the page

table for the currently running program — Page Table Register

* The page table maps each possible virtual memory location to a
physical memory location

ELE 455/555 — Spring 2016 16 Ot

AL e

« Page Tables

Starting address of the Page table register

page table in main Virtual address
memory — process A o 28 o Wl d 5 15 14 13 12 11 10 9 8 =+oov- 3210 Address known to
dependent Virtual page number Page offset the program and
_ a4 12 the processor
Valid Physical page number

Main memory —
memory locations
(220 = 2M entries) |2 1

Page table

{78

If 0 then page is not

present in memory

aoggie ot o B S S | 15 14 13 12 11 10 9 8 ---e- 3210 PhyS|Ca| address
Physical page number Page offset to read from /

Physical address write to
ELE 455/555 — Spring 2016 17 y

B A N9 ll 11

s " B ilan =T .\

Virtual e
Page Tables e o
Page table
Physical page or Physical memory
Valid disk address
» Logical configuration L
1 T
1
0 o P
1 N
1 S o
0 ol A
1 w7 Disk storage
1 Cd
0 oL
1 ¢

* In most systems — 1 page table but separate data structures
« 1 for main memory
» 1 for secondary memory
* Always need to know where the page is in secondary memory — never changes

ELE 455/555 — Spring 2016 18 © tj

il ANy "' f o™ \ ' . A L AT

g -

.oh-of'wﬂp '{
: Al

> 4 l’l
Implementation

Page Fault - read

« Page is not in main memory and the valid bit is NOT set in the page table

Processor throws an exception -> gives control to the OS

OS finds the page on disk (using the HDD portion of the page table)
» Located in the swap space

If necessary — the OS determines which page to write back to the HDD if the
memory was full
* Must be dirty
* LRU is typical — but with a sophisticated process
« Often include a reference bit (indicates the page has been referenced
recently)

OS returns control to the program and re-executes the read
« This time it finds the page in main memory

ELE 455/555 — Spring 2016 19 © tj

ot :

Ay " ' r 214 ' l' | : NIy T T
y i ' e .- - R ! v
N B :
‘
' '

.
0"‘."“r."'.:‘

» .
4 i

‘ * gy | ﬂn?.

.1‘ e i‘iﬁ:&l | ‘E‘ 3 z'.:o

Page Fault - write

« Page is not in main memory and the valid bit is NOT set in the page table

* Processor throws an exception -> gives control to the OS
» OS finds the page on disk (using the HDD portion of the page table)

» If necessary — the OS determines which page to write back to the HDD if the
memory was full

* OS reads the page in
» OS returns control to the program and re-executes the write

* Uses a write-back approach — only writes when it is swapped back out and dirty

ELE 455/555 — Spring 2016 20 Ot

wdBA g 0l 1000
S 2NV Lk T A ! -4
K N - \ N0\ §
. A28 8 ’
'

Traniaion Lok

« Page Table Issue

« Every memory access requires 2 accesses
« 1 —for the page table lookup (translation) — in memory
« 1 — for the actual memory read/write — in memory

« Fortunately — Pages have high temporal and spatial locality

* Create a cache of the translation entries
» Translation-Lookaside Buffer (TLB)

ELE 455/555 — Spring 2016 (. © tj

a1 AT !

M ‘. ..'
po . .

* Translation-Lookaside Buffer

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address
| |
. 1]10(1 .

Virtual Page number T4 N . Physical memory
maps to the tag if fully T bl [-
associative and some ~ 1101 -
combination of tag and 0/(0)|0
index if set-associative 1101 23

Page table

Physical page
Valid Dirty Ref or disk address

«~ Disk storage

=0 == O|O|O|0|O|O|O|C

R
N

N
N\

ELE 455/555 — Spring 2016 4 i © tj

ARA N e 1A

* TLB Hit o) e
- Page is in main memory e
« Tag matches vy e s
« Valid bit is 1 Hoa——
e
- Physical address is provided to the cache 0 S —

* Ref bitis set
» |If a write — dirty bit is set

ELE 455/555 — Spring 2016 23 © tj

~u»00050‘\‘ oh

.
-

t'. a ~“ !"l I' u:c}l

.
PY Virtual page Physical page
number Valid Dirty Ref Tag address
[]

101 ey

1 1 : -~ Physical memory

1[0]1 L

0/0]0

1[0]1 Lt

TLB

« Page is notinthe TLB

Page table

Physical page
ValidDirty Ref or disk address
—

1[0

» Check the page table 0

« Hit
* load the page info into the TLB
* Must have a replacement policy
* Provide the physical address to the cache

2 AN N RURE
Y

—lo|=|=|o|=]—
J P I A P

* Miss - Page Fault
 Throw an exception ...
* Once the page is loaded in memory and the entry added to the TLB — re-issue
the read/write

ELE 455/555 — Spring 2016 24 © tj

BAsesindiitiio

P

Possible TLB situations

Page
table Possible? If so, under what circumstance?

Miss | Possible, although the page table is never really checked if TLB hits.

Miss | Hit Hit | TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss | TLB misses, but entry found in page table; after retry, data misses in cache.

Miss | Miss Miss | TLB misses and is followed by a page fault; after retry, data must miss in cache.
Hit Miss Miss | Impossible: cannot have a translation in TLB if page is not present in memory.
Hit | Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss | Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

ELE 455/555 — Spring 2016 25 ©tj

o =

B A N9 ll 11

s 3 A Ny g ' ~
- g A |'.\o‘..’

slation-Look

« Typical TLB P P
« 16 - 512 blocks S ath
« 1 - 2 page table entries/block i SRR
« Hit time: 0.5 — 1 clock cycle e
* Miss penalty: 10 - 100 clock cycles e —————
« TLB miss only — not a page fault :,,, [——

TLB Miss rate: 0.01% - 1%

ELE 455/555 — Spring 2016 26 © tj

‘\-.J"“. ‘-.d‘

Virtual address

I 0 e 10 0 080 00000800 0000 060 0 099000 14 13 12 11 10 Q- veeveen- 32410
| Virtual page number Page offset |
420 .|12
Valid Dirty Tag Physical page number
[Cham
TLB =
TLB hit < e—
[Sham
@-‘—
D=
420
Physical page number | Page offset
Physical address Block
Physical address tag | Cache index ‘ %
offset
+18 J8 J4 13
48
412 Data
Valid Tag
Cache
(=
Cache hit
4 32
ELE 455/555 — Spring 2016 >

Data

Byte
offset

TLB miss
exception

No

Virtual address

=

Physical address

Cache miss stall
while read block

Try to read data
from cache

. Wri:; C;:;:;t:ion Try to write data
les cachi
Cache hit? i .
Deliver data
to the CPU
Cache miss stall | N© had
while read block

Write data into cache,
update the dirty bit, and
put the data and the
address into the write buffer,

© t]

ey "3 "‘ nuul Wiekea
- 13 :-.\... ° . :

"Q l-,fﬁ “e - . "o 04 \‘".QrOo'.o .
| ‘!‘f‘.} IR 1 A

t‘“x"’ "'"'JE" .ﬁ - e

Physical vs Virtual addressed caches

* We have been working with physically addressed caches

* There are versions of caches that can use the virtual address

« virtually indexed, virtually tagged
* TLB only used in misses
« Can lead to aliasing when multiple processes access the same page
« different virtual addresses - same page, changing 1 will not be reflected to
the other

 virtually indexed, physically tagged
« Extend the mapping of the address to the indexes
* Reduces some of the options in the VM space
* Reduces the amount of mapping (page tables, ...)

ELE 455/555 — Spring 2016 28 Ot

Al 1 SANTTTIE)

AN L A
v — e wy -

J.“

o
4 A\ /11 f‘}“ﬁ

|

R I"i.':
'

|

]

(“" L’\ W‘l.‘

 Virtual Memory and Memory Protection

» The OS controls the Page Tables

» Protects processes from damaging each others memory by not

placing any common memory translations in multiple page tables
« [fit's not in the page table — the process can’t get to it

« The OS can allow sharing

 Program
* Multiple mapping to the same location
« Write access turned off

 Data
* Multiple mapping to the same location
» Write access may be on or off

ELE 455/555 — Spring 2016) © tj

-‘.b“ s Sl ' ! . . QHOO‘. (AT TR)

--,

"""’-ﬁ*ﬁ"..b‘:. ; v '3 . .uo’r't
’ 4\‘ A W/ '. | o 0.. s . "

‘1 nY; ﬁ' :) . .' ' | . N'o)
- ‘e] - ad . R

 Virtual Memory and Memory Protection

» To provide protection the system needs 4 capabilities

« Support for a user mode and a supervisor (kernal, executive) mode
» Supervisor mode bit

» Portions of the processor state can only be changed in supervisor mode
» Special instructions
+ Page table and page table pointer
- TLB

 Ability to switch back and forth
« To transition to supervisor mode — “syscall” executed on an exception
* To return to user mode — “eret” to load the EPC into the PC and return

« A portion of the address space for the OS and protected from all users

ELE 455/555 — Spring 2016 30 © tj

AN T

PROCESSOR

31 30 13 12 11 10 2 1 0
Vitrual Page Number | Page Offset ‘ M . Seco N da r
ain Memory it
Memory
p Address Data
VD Tag Physical Page Number TLB Miss &
6»4— r Page Table Hit
S 3 Page Table 1
[OL
[OF =m
[OX ==
v | Page Table 2
TLB Hit \l/
29 28 13 12 11 10 Vv P i @
Physical Page Number | Page Offset Page v
i Block Byte Fault
Physical Alddress Tag | Cache Index " s SWAP
V Tag Data 15 Data 14 Data 1 Data 0

V/ | |i_\l/BI kM\r

v

ELE 455/555 — Spring 2016 31 © tj

Hit

ARA N e 1A

Start a new Process

OS: Copy process VM to swap
Create page table: map to HDD, not to MM
Start process

P: Request instruction using virtual address

- TLB Miss

- Page table miss
- Page Fault

- Exception

OS: Use page table to find page in swap
Transfer page to main memory
Update page table
Update TLB
Return

P: Repeat request

- TLB Hit

- Cache miss

-> Stall processor and load cache from main
memory

2% Repeat request

- TLB Hit

- Cache hit

- Request served

ELE 455/555 — Spring 2016

PROCESSOR
31 30 1B 12 1110 N o
Vitrual Page Number ‘ Page Offset ‘ Main Memory Secondary
Memory
" Address Data
VD Tag Physical Page Number TLB Miss &
O | | Page Table Hit
H-&5E 1 | PageTable T _1——
[T < } }
HHEE ‘ |
J PageTable2 ——
LB Hit
Physical Page Number ‘ Page Offset Page

3 Block Byte Fault
Physical Address Tag ‘ Cache Index ‘ o e <—P| SWAP

v Tag Data 15 Data 14 Data 1 Data 0

I [] [[]
| [! [[|

[[| S=<aml [!

[[] [[]

I I] [I]

\ \ | | \ 1<

| | | | | |

[[] [[]

t@&A | vl Blocl\lMu\)l(/J | ——

32 O

