
ELE 455/555

Computer System Engineering

Section 3 – Memory

Class 4 – Virtual Memory

2 © tjELE 455/555 – Spring 2016

Virtual Memory

• Virtual Machine

• Host computer emulates guest operating system and machine

resources
• Improved isolation of multiple guests

• Avoids security and reliability problems

• Aids sharing of resources

• Virtualization has a performance impact
• Feasible with modern high-performance computers

• Examples
• IBM VM/370 (1970s technology!)

• VMWare

• Microsoft Virtual PC

• Cloud computing

Virtual Machines

3 © tjELE 455/555 – Spring 2016

Virtual Memory

• System Virtual Machine

• Virtualizes the entire computing experience
• Users believe they are running stand-alone

• Can support multiple OSes

• Share hardware resources

• Supported by the virtual machine monitor (VMM)
• aka hypervisor

• Hardware is called the host

• VMs are called the guests

Virtual Machines

4 © tjELE 455/555 – Spring 2016

Virtual Memory

• Amazon Web Services (AWS)

• Uses virtual machines in its web services to:

• Protect users from each other

• One guest image can be distributed to as many hosts as needed

• Can reliably “kill” a VM when done (security)

• Hides hardware – giving AWS flexibility in age, location, speed, …

• Resource control and monitoring – can limit the resources available to

each guest

Virtual Machines

5 © tjELE 455/555 – Spring 2016

Virtual Memory

• Virtual Memory

• Use main memory as a cache for secondary memory
• Typically HDD for PC systems, Flash for mobile systems

• Why?
• Allow multiple programs (VMs) to share a common memory

• Manage the limitations of main memory size

• How?
• Cache portions of the secondary memory in main memory

• Allows different programs to be resident in main memory with-in different

cache blocks (pages)

Overview

6 © tjELE 455/555 – Spring 2016

Virtual Memory

• Virtual Memory

• If we cache different programs into main memory we create an

addressing issue – processor uses the absolute address in main memory

• How does the processor know where specific parts of code get cached

to?

• The location can change each time the program is started

• The location can change if it gets swapped out and then back in again

• Each program gets its own address space
• This is a fictitious (virtual) address space

• Only the program can access its address space

• The address space is defined at compile time and does not change

• The processor must translate(through HW and SW) from this

“virtual address” to a physical address.

Overview

7 © tjELE 455/555 – Spring 2016

Steps for Loading a Process in Memory

• The linker combines object modules into
a single executable binary file (load module)

• The loader places the load module in physical memory

System
Library

System
Library

static linking

dynamic linking

Linking: combine all the object
modules of a program into a
binary program image

8 © tjELE 455/555 – Spring 2016

The Linking Function

8

Module A

CALL B

Return

Length L

Module B

CALL C

Return

Length M

Module C

Return

Length N

0

L-1

Module A

JSR “L”

Return

Module B

JSR “L+M”

Return

Module C

Return

L

L+M-1

L+M

L+M+N-1

Object Modules

Load Module

0

L-1

0

M-1

0

N-1

9 © tjELE 455/555 – Spring 2016

Virtual Memory

• Terminology

• Virtual Memory operates like a cache but some of the terms used

are different for historical reasons

• Address generated by the processor – virtual address

• Blocks used in the VM system are called Pages

• Misses in the VM system are called Page Faults

• Physical Memory – typically refers to main memory (DRAM)

• Address Translation – converting the virtual memory address created by

the processor to a physical memory address associated with the DRAM,

flash or disk

• Swap Space – a copy of all the virtual memory space (required by a

process) on the HDD – makes finding unloaded pages easier (16GB)

Overview

10 © tjELE 455/555 – Spring 2016

Virtual Memory

• Address Translation

• Each program has its own virtual memory space

• When loading the program the processor will map the virtual

memory location loaded (used by the program) - into the

corresponding physical address actually used to store the

code/data
• Not all of the program need be loaded – only the pages needed

• Pages are fixed in size (remember these are cache blocks)

• Pages can be loaded into any main memory location the processor

chooses

Overview

11 © tjELE 455/555 – Spring 2016

Virtual Memory

• Address Translation

• Overly simplistic example

Overview

Virtual addresses – created
by the compiler and used by
the processor

Physical addresses – The
actual location of blocks
(pages) in memory or on
disk

Virtual address Physical address

1234 --> dram 5463

1235 --> dram 7638

1236 --> hdd 1254

1456 --> dram 5281

12 © tjELE 455/555 – Spring 2016

Virtual Memory

• Address Translation

Overview

Virtual address space = 4GB

Physical address space = 1GB

Page offset – the memory
location within a page

Page size = 212 = 4KB

13 © tjELE 455/555 – Spring 2016

Virtual Memory

• Address Translation

• Each program (process) will have its own virtual memory space

• But there is only 1 physical memory

• The VMM is responsible for physical memory management
• Protects programs from overwriting each other

• Allows programs to share

Overview

Only 1 physical memory

14 © tjELE 455/555 – Spring 2016

Virtual Memory

• Page Fault

• The processor addresses a given virtual address
• If the address maps to the main memory – HIT

• If the address maps to the secondary memory – Miss = page fault

• Page fault - requires a page to be read from secondary memory
• At 10ms access times (HDD) = 10M clock cycles to get the first byte

when running at 1GHz

• Need to transfer 4KB

• Must reduce page faults to the lowest possible value

Implementation

15 © tjELE 455/555 – Spring 2016

Virtual Memory

• Page Fault

• Approaches to reduce page fault impact

• Page size – large enough to capture large portions of the program
• 4KB, 16KB typical – but growing

• 1KB for mobile – smaller aps

• Fully associative placement

• Use SW to manage page faults
• Small overhead compared to the delay of a miss

• Can be very sophisticated in placement and replacement

• Use write-back
• Only when necessary (dirty)

Implementation

16 © tjELE 455/555 – Spring 2016

Virtual Memory

• Page Tables

• Remember – fully associative placement is costly due to the time

and circuitry needed to find the block (page) you are looking for

• VM uses the existing memory addressing/decoding capability built

into main memory
• Each program (process) is allocated a space in main memory to place

the address translation information for that process – Page Table

• The processor includes a register to point to the location of the page

table for the currently running program – Page Table Register

• The page table maps each possible virtual memory location to a

physical memory location

Implementation

17 © tjELE 455/555 – Spring 2016

Virtual Memory

• Page Tables

Implementation

Address known to
the program and
the processor

Physical address
to read from /
write to

Starting address of the
page table in main
memory – process
dependent

Main memory –
memory locations
(220 = 2M entries)

18 © tjELE 455/555 – Spring 2016

Virtual Memory

• Page Tables

• Logical configuration

• In most systems – 1 page table but separate data structures
• 1 for main memory

• 1 for secondary memory
• Always need to know where the page is in secondary memory – never changes

Implementation

19 © tjELE 455/555 – Spring 2016

Virtual Memory

• Page Fault - read

• Page is not in main memory and the valid bit is NOT set in the page table

• Processor throws an exception  gives control to the OS

• OS finds the page on disk (using the HDD portion of the page table)

• Located in the swap space

• If necessary – the OS determines which page to write back to the HDD if the

memory was full

• Must be dirty

• LRU is typical – but with a sophisticated process

• Often include a reference bit (indicates the page has been referenced

recently)

• OS returns control to the program and re-executes the read

• This time it finds the page in main memory

Implementation

20 © tjELE 455/555 – Spring 2016

Virtual Memory

• Page Fault - write

• Page is not in main memory and the valid bit is NOT set in the page table

• Processor throws an exception  gives control to the OS

• OS finds the page on disk (using the HDD portion of the page table)

• If necessary – the OS determines which page to write back to the HDD if the

memory was full

• OS reads the page in

• OS returns control to the program and re-executes the write

• Uses a write-back approach – only writes when it is swapped back out and dirty

Implementation

21 © tjELE 455/555 – Spring 2016

Virtual Memory

• Page Table Issue

• Every memory access requires 2 accesses
• 1 – for the page table lookup (translation) – in memory

• 1 – for the actual memory read/write – in memory

• Fortunately – Pages have high temporal and spatial locality

• Create a cache of the translation entries
• Translation-Lookaside Buffer (TLB)

Translation-Lookaside Buffer

22 © tjELE 455/555 – Spring 2016

Virtual Memory

• Translation-Lookaside Buffer

Translation-Lookaside Buffer

Virtual Page number
maps to the tag if fully
associative and some
combination of tag and
index if set-associative

23 © tjELE 455/555 – Spring 2016

Virtual Memory

• TLB Hit

• Page is in main memory
• Tag matches

• Valid bit is 1

• Physical address is provided to the cache
• Ref bit is set

• If a write – dirty bit is set

Translation-Lookaside Buffer

24 © tjELE 455/555 – Spring 2016

Virtual Memory

• TLB Miss

• Page is not in the TLB

• Check the page table

• Hit
• load the page info into the TLB

• Must have a replacement policy

• Provide the physical address to the cache

• Miss  Page Fault
• Throw an exception …

• Once the page is loaded in memory and the entry added to the TLB – re-issue

the read/write

Translation-Lookaside Buffer

25 © tjELE 455/555 – Spring 2016

Virtual Memory

• Possible TLB situations

Translation-Lookaside Buffer

26 © tjELE 455/555 – Spring 2016

Virtual Memory

• Typical TLB

• 16 - 512 blocks

• 1 - 2 page table entries/block

• Hit time: 0.5 – 1 clock cycle

• Miss penalty: 10 - 100 clock cycles
• TLB miss only – not a page fault

• TLB Miss rate: 0.01% - 1%

Translation-Lookaside Buffer

27 © tjELE 455/555 – Spring 2016

Virtual Memory

• Intrinsity

Translation-Lookaside Buffer

28 © tjELE 455/555 – Spring 2016

Virtual Memory

• Physical vs Virtual addressed caches

• We have been working with physically addressed caches

• There are versions of caches that can use the virtual address

• virtually indexed, virtually tagged
• TLB only used in misses

• Can lead to aliasing when multiple processes access the same page

• different virtual addresses  same page, changing 1 will not be reflected to

the other

• virtually indexed, physically tagged
• Extend the mapping of the address to the indexes

• Reduces some of the options in the VM space

• Reduces the amount of mapping (page tables, …)

Virtually Addressable Cache

29 © tjELE 455/555 – Spring 2016

Virtual Memory

• Virtual Memory and Memory Protection

• The OS controls the Page Tables

• Protects processes from damaging each others memory by not

placing any common memory translations in multiple page tables
• If it’s not in the page table – the process can’t get to it

• The OS can allow sharing
• Program

• Multiple mapping to the same location

• Write access turned off

• Data
• Multiple mapping to the same location

• Write access may be on or off

Protection

30 © tjELE 455/555 – Spring 2016

Virtual Memory

• Virtual Memory and Memory Protection

• To provide protection the system needs 4 capabilities

• Support for a user mode and a supervisor (kernal, executive) mode
• Supervisor mode bit

• Portions of the processor state can only be changed in supervisor mode
• Special instructions

• Page table and page table pointer

• TLB

• Ability to switch back and forth
• To transition to supervisor mode – “syscall” executed on an exception

• To return to user mode – “eret” to load the EPC into the PC and return

• A portion of the address space for the OS and protected from all users

Protection

31 © tjELE 455/555 – Spring 2016

Virtual Memory

Cache Review

V D Tag Physical Page Number

* * *

31 30 13 12 11 10 2 1 0

Vitrual Page Number Page Offset

Address Data

Page Table 1

Page Table 2
29 28 13 12 11 10 2 1 0

Physical Address Tag Cache Index
Block

Offset

Byte

Offset

Physical Page Number Page Offset

V Tag Data 15 Data 14 Data 1 Data 0

* * *

* * *

* * * * * *

Main Memory

Block Mux

=
=
=

=
=
=

TLB Hit

TLB Miss &
Page Table Hit

Secondary
Memory

Page
Fault

PROCESSOR

SWAP

32 © tjELE 455/555 – Spring 2016

Virtual Memory

Cache Review
Start a new Process

OS: Copy process VM to swap

Create page table: map to HDD, not to MM

Start process

P: Request instruction using virtual address

 TLB Miss

 Page table miss

 Page Fault

 Exception

OS: Use page table to find page in swap

Transfer page to main memory

Update page table

Update TLB

Return

P: Repeat request

 TLB Hit

 Cache miss

 Stall processor and load cache from main

memory

P: Repeat request

 TLB Hit

 Cache hit

 Request served

