
ELE 455/555

Computer System Engineering

Section 3 – Memory

Class 5 – Cache Control

2 © tjELE 455/555 – Spring 2016

Steps for Loading a Process in Memory

• The linker combines object modules into
a single executable binary file (load module)

• The loader places the load module in physical
memory

2

System
Library

System
Library

static linking

dynamic linking

Linking: combine all the object
modules of a program into a
binary program image

3 © tjELE 455/555 – Spring 2016

Virtual Memory

Cache Review

V D Tag Physical Page Number

* * *

31 30 13 12 11 10 2 1 0

Vitrual Page Number Page Offset

Address Data

Page Table 1

Page Table 2
29 28 13 12 11 10 2 1 0

Physical Address Tag Cache Index
Block

Offset

Byte

Offset

Physical Page Number Page Offset

V Tag Data 15 Data 14 Data 1 Data 0

* * *

* * *

* * * * * *

Main Memory

Block Mux

=
=
=

=
=
=

TLB Hit

TLB Miss &
Page Table Hit

Secondary
Memory

Page
Fault

PROCESSOR

SWAP

4 © tjELE 455/555 – Spring 2016

Cache Control

• Miss Definitions

• Compulsory misses (aka cold start misses)
• First access to a block

• Capacity misses
• Due to finite cache size
• A replaced block is later accessed again

• Conflict misses (aka collision misses)
• In a non-fully associative cache
• Due to competition for entries in a set
• Would not occur in a fully associative cache of the same total size

Sources of Misses

5 © tjELE 455/555 – Spring 2016

Cache Control

• Example cache characteristics
• Direct-mapped, write-back, write allocate

• Block size: 4 words (16 bytes)

• Cache size: 16 KB (1024 blocks)

• 32-bit byte addresses

• Valid bit and dirty bit per block

• Blocking cache
• CPU waits until access is complete

Finite State Machine

Tag Index Offset

03491031

4 bits10 bits18 bits

6 © tjELE 455/555 – Spring 2016

Cache Control

• Example cache characteristics

Finite State Machine

7 © tjELE 455/555 – Spring 2016

Cache Control

• Example cache characteristics

Finite State Machine

CacheCPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles

per access

8 © tjELE 455/555 – Spring 2016

Cache Control

• Finite State Machine

• Use an FSM to sequence

control steps

• Set of states, transition on each

clock edge
• State values are binary encoded

• Current state stored in a register

• Next state

= fn (current state, current inputs)

• Control output signals = fn (current state)

Finite State Machine

9 © tjELE 455/555 – Spring 2016

Cache Control

• Finite State Machine

• Programmable Logic Array

Finite State Machine

10 © tjELE 455/555 – Spring 2016

Cache Control

• FSM for Cache Controller
• 4 states

• Idle
• Wait for a valid read or write request

• Compare Tag
• Tests the requested read/write address tag

• Hit
• Assert cache ready signal

• Read / write word

• On write – set dirty bit

• On both – write valid and tag bits - Why?

• Return to Idle

• Miss
• If block is dirty  Write Back

• If not dirty  Allocate

Finite State Machine

11 © tjELE 455/555 – Spring 2016

Cache Control

• FSM for Cache Controller
• 4 states

• Write Back
• Write the block back to memory – 128 bits

• When memory ready signal asserted (ready for access)  Allocate

• Allocate
• Fetch new block from memory

• When memory ready signal asserted (read complete)  Compare Tag

Finite State Machine

12 © tjELE 455/555 – Spring 2016

Cache Control

• FSM for Cache Controller
• 4 states

Finite State Machine

13 © tjELE 455/555 – Spring 2016

Cache Control

• Multi-processor Systems and Caches

• Two CPU cores sharing a common higher level of memory

Coherency

Time

step

Event CPU A’s

cache

CPU B’s

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

14 © tjELE 455/555 – Spring 2016

Cache Control

• Multi-processor Systems and Caches

• Coherency
• Informally: Reads return most recently written value

• Formally:
• P writes X; P reads X (no intervening writes)

 read returns written value

• P1 writes X; P2 reads X (sufficiently later)

 read returns written value

• P1 writes X, P2 writes X

 all processors see writes in the same order

• End up with the same final value for X

Coherency

15 © tjELE 455/555 – Spring 2016

Cache Control

• Multi-processor Systems and Caches

• Operations performed by caches in multiprocessors to ensure

coherence

• Migration of data to local caches
• Reduces bandwidth for shared memory

• Replication of read-shared data
• Reduces contention for access

Coherency

16 © tjELE 455/555 – Spring 2016

Cache Control

• Multi-processor Systems and Caches

• 2 approaches

• Snooping protocols
• Each cache monitors bus reads/writes

• Directory-based protocols
• Caches and memory record sharing status of blocks in a directory

Coherency

17 © tjELE 455/555 – Spring 2016

Cache Control

• Multi-processor Systems and Caches

• Write Invalidate Protocol
• Cache gets exclusive access to a block when it is to be written

• Broadcasts an invalidate message on the bus
• Subsequent read in another cache misses
• Owning cache supplies updated value

Coherency

CPU activity Bus activity CPU A’s

cache

CPU B’s

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1

18 © tjELE 455/555 – Spring 2016

Cache Control

• Multi-processor Systems and Caches

• Block Size Impacts on snooping protocols

• Most protocols invalidate whole blocks
• 2 processors accessing different words in a common block  dithering
•  smaller blocks desirable

Coherency

19 © tjELE 455/555 – Spring 2016

Cache Control

• Failure

• Service Accomplishment
• Service provided as specified

• Service Interruption
• Deviation from specified service

• Failure
• Transition from accomplishment

to interruption

• Restoration
• Transition from interruption to

accomplishment

Memory Dependability

Service accomplishment

Service delivered

as specified

Service interruption

Deviation from

specified service

FailureRestoration

20 © tjELE 455/555 – Spring 2016

Cache Control

• Dependability Measures

• Reliability: mean time to failure (MTTF)

• Service interruption: mean time to repair (MTTR)

• Mean time between failures
• MTBF = MTTF + MTTR

• Availability = MTTF / (MTTF + MTTR)

• Improving Availability
• Increase MTTF: fault avoidance, fault tolerance, fault forecasting

• Reduce MTTR: improved tools and processes for diagnosis and repair

Memory Dependability

21 © tjELE 455/555 – Spring 2016

Cache Control

• Dependability Measures

• 9’s measure

• 90%, 99%, 99.9%, 99.99%

• Five 9’s availability

• 365 days/yr x 24hrs/day x 60min/hr = 526,000 min/yr

• 99.999% availability  0.001% repair

• Five 9’s  5.29 min/year of repair time

Memory Dependability

22 © tjELE 455/555 – Spring 2016

Cache Control

• Faults

• Failure of a component

• To improve MTTF

• Fault Avoidance
• Prevent faults by construction

• High reliability parts

• Fault Tolerance
• Use redundancy to allow the system to continue

• Fault Forecasting
• Predict faults and resolve before occurrence

• Early detection measures – current drain, voltage levels

• Periodic maintenance

Memory Dependability

23 © tjELE 455/555 – Spring 2016

Cache Control

• Redundancy in Memories

• Chip level
• Extra rows and columns

• Non-functioning portions of the circuit are replaced

• Decode circuitry is “re-directed” to the replacement row/column

• Flash
• Flash can wear out after 100,000 r/w cycles

• Wear leveling is used to ensure data is moved around in the flash

• Bit Level
• Error Detection

• Error Correction

Memory Dependability

24 © tjELE 455/555 – Spring 2016

Cache Control

• Bit Level Error Detection

• Parity Checking

• Add a bit to every byte – parity bit

• Force the parity bit to be either 1 or 0 depending on the eveness or

oddness of the other bits

• Even parity – sum of bits is even

• Odd parity – sum of bits is odd

• 1001 0110  1001 0110 0 To create even parity

• 1001 0111  1001 0111 1 To create even parity

• On reads – check to make sure parity is correct, if not  error

Memory Dependability

25 © tjELE 455/555 – Spring 2016

Cache Control

• Bit Level Error Detection

• Richard Hamming

• Hamming distance

• # of bits that are different between 2 numbers

• 1001 0110 and 1000 0110 differ by 1 bit  Hamming distance = 1

• 1001 0110 and 1000 0010 differ by 2 bits  Hamming distance = 2

• Parity can find 1,3,5,7 bit errors
• 3,5,7 bit errors are very rare

• More sophisticated schemes are required to detect even number bit

errors and to correct some kinds of errors

Memory Dependability

26 © tjELE 455/555 – Spring 2016

Cache Control

• Bit Level Error Correction

• Hamming Error Correction Code (ECC)
• Inset 4 parity bits into each byte  Hamming distance = 3

• Each parity bit matches up to 5 bits in the new 12 bit structure

• Parity code indicates which bit is flipped in a single bit error
• The bit can then be fixed

Memory Dependability

27 © tjELE 455/555 – Spring 2016

Cache Control

• Bit Level Error Correction

• Example - 1001 1010  _ _ 1_001_1010

• With ECC : p1  _ _1_001_1010  0 _1_001_1010

• With ECC : p2  0 _1_001_1010  0 11_001_1010

• With ECC : p4  0 11_001_1010  0 111001_1010

• With ECC : p8  0 111001_1010  0 11100101010

Memory Dependability

28 © tjELE 455/555 – Spring 2016

Cache Control

• Bit Level Error Correction

• Example - 1001 1010  011100101010

assume we actually read 011100101110

p1 = 011100101110 = 4 – OK - 0

p2 = 011100101110 = 5 – not OK - 1

p4 = 011100101110 = 2 – OK - 0

p8 = 011100101110 = 3 – not OK - 1

Parity result is 1010b = 10  d6 is wrong

Flip d6

011100101110  011100101010, correct

Memory Dependability

29 © tjELE 455/555 – Spring 2016

Cache Control

• Bit Level Error Detection

• Dual Error Detection
• Add an additional parity bit for the whole word (pn)

• Make Hamming distance = 4

• Decoding:
• Let H = SEC parity bits

• H even, pn even, no error

• H odd, pn odd, correctable single bit error

• H even, pn odd, error in pn bit

• H odd, pn even, double error occurred

• ECC DRAM uses SEC/DEC with 8 bits protecting each 64 bits

Memory Dependability

