
ELE 455/555

Computer System Engineering

Section 3 – Memory

Class 6 – Optimization

2 © tjELE 455/555 – Spring 2016

Memory Optimization

• Common Framework for Memory Hierarchy

• Caching
• Used at each level

• Optimizes access time vs. availability

• Common Issues
• Block placement

• Finding a block

• Replacement on a miss

• Write policy

Framework

3 © tjELE 455/555 – Spring 2016

Memory Optimization

• Common Framework for Memory Hierarchy

• Block Placement

• Direct mapped (1-way associative)
• One choice for placement

• n-way set associative
• n choices within a set

• Fully associative
• Any location

• Higher associativity reduces miss rate

• Increases complexity, cost, and access time

Framework

4 © tjELE 455/555 – Spring 2016

Memory Optimization

• Common Framework for Memory Hierarchy

• Finding a block

• Hardware caches
• Reduce comparisons to reduce cost

• Virtual Memory
• Full table lookup make full associativity feasible

• reduced miss rate

Framework

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set associative
Set index, then search

entries within the set
n

Fully associative
Search all entries #entries

Full lookup table 0

5 © tjELE 455/555 – Spring 2016

Memory Optimization

• Common Framework for Memory Hierarchy

• Replacement on a miss

• Least recently used (LRU)
• Complex and costly hardware for high associativity

• Random
• Close to LRU, easier to implement

• Virtual memory

• LRU approximation with hardware support

Framework

6 © tjELE 455/555 – Spring 2016

Memory Optimization

• Common Framework for Memory Hierarchy

• Write Policy

• Write-through
• Update both upper and lower levels

• Simplifies replacement, but may require write buffer

• Write-back
• Update upper level only

• Update lower level when block is replaced

• Need to keep more state

• Virtual memory
• Only write-back is feasible, given disk write latency

Framework

7 © tjELE 455/555 – Spring 2016

Memory Optimization

• Common Framework for Memory Hierarchy

• Design tradeoffs

Framework

Design change Effect on miss rate Negative performance effect

Increase cache size Decrease capacity misses May increase access time

Increase associativity Decrease conflict misses May increase access time

Increase block size Decrease compulsory misses

Increases miss penalty. For very large

block size, may increase miss rate due

to pollution.

8 © tjELE 455/555 – Spring 2016

Memory Optimization

• Larger Block Size

+ Take advantage of spatial locality lower miss rates

- Higher miss penalty

Optimizations

Miss rate vs Block size for 4 different cache sizes

9 © tjELE 455/555 – Spring 2016

Memory Optimization

• Larger Cache Size

+ Reduces capacity misses lower miss rates

- Possibly longer Hit time

- Cost and area

Optimizations

10 © tjELE 455/555 – Spring 2016

Memory Optimization

• Higher Associativity

+ Reduces conflict misses lower miss rates

- Possibly longer Hit time

Rules of thumb:

Diminishing returns for

ways > 8

2:1 cache rule – direct

mapped cache of size

n has the same miss

rate as a 2-way cache

of size n/2

Optimizations

0

0.02

0.04

0.06

0.08

0.1

0.12

4kB 8kB 16kB 32kB 64kB 128kB

M
is

s
R

at
e

Cache Size

Miss rate vs Cache size and way

1-way

2-way

4-way

8-way

11 © tjELE 455/555 – Spring 2016

Memory Optimization

• Multilevel Caches

+ Small caches support fast processors

- Small caches higher miss rates

Memory speeds not keeping up with processor speeds

 Higher miss penalties

Multilevel caches allow:

local caches to be fast to support fast processors

local to second level cache miss penalties to be smaller

leverage the global miss rate effect to minimize the impact

of large main memory miss penalties

Optimizations

12 © tjELE 455/555 – Spring 2016

Memory Optimization

• Multilevel Caches

• Rules of thumb:

Global miss rate is close to

single cache hit rate when L2

is large compared to L1

L2 local miss rate is not a good

measure of performance

Optimizations

L2 miss rate with 2 64KB first level caches

13 © tjELE 455/555 – Spring 2016

Memory Optimization

• Prioritize Read Misses

• In a write-through cache we introduced the write buffer to free up

the cache during writes
• What if the read is on what is in the write buffer

• Forced back to waiting on the write

• Modify the cache to check the write buffer during reads
• On hit – read the data

• In a write-back cache we write the dirty block back then read in the

new data
• Add a write buffer here also

• Write the dirty block to the buffer

• Do the read

• Complete the write

Optimizations

14 © tjELE 455/555 – Spring 2016

Memory Optimization

• Way Prediction

• Add bits to each way/block to predict the next access

• Based on prediction, check the predicted way/block first

 reduced hit times

• 2-way prediction accuracy can be 90%

• I caches predict better than D caches

Optimizations

15 © tjELE 455/555 – Spring 2016

Memory Optimization

• Pipelined Cache Accesses

• Allows for longer access times but higher throughput
• Multiple clocks for an access

• 1 word per clock

• Can increase the clock rate

• Increases the miss penalty
• Especially bad on mispredicted branches

Optimizations

16 © tjELE 455/555 – Spring 2016

Memory Optimization

• Non-Blocking Caches

• Out-of-order execution processors do not need to wait on a miss

• Called “hit under miss”

• Works well with L1 misses that hit in L2
• Enough alternate instructions available to continue with-in response time

• Cannot hide L2 misses
• Run out of alternate instructions stalls

Optimizations

17 © tjELE 455/555 – Spring 2016

Memory Optimization

• Multibanked Caches

• Banking allows accesses to be spread across banks
• Reduces the effective access time

• Sequential Interleaving – spreads instructions across the banks in

modulo form

Optimizations

18 © tjELE 455/555 – Spring 2016

Memory Optimization

• Critical Word First

• Valuable for large block sizes

• Transfers the requested word (out of n in the block) first
• Reduces wait for reads/loads

• Early Restart

• Transfer the block in normal order

• Restart the processor as soon as the requested word is loaded

Optimizations

19 © tjELE 455/555 – Spring 2016

Memory Optimization

• Merging Write Buffer

• A second write to a block already in the write buffer

• Merge the contents

 reduced stalls

Ex.

4 entry write buffer

each entry 4-64bit words

V bit indicates the sequential

address is valid

Optimizations

20 © tjELE 455/555 – Spring 2016

Memory Optimization

• Hardware Prefetching

• Instructions
• On a read from main memory

• Read the requested block and place in the cache

• Read the next sequential block and place it in an instruction stream buffer

• On reads – check the instruction stream buffer first
• If a hit

• cancel the main memory read and load from the buffer

• prefetch the next block

• Data
• Same process but less effective

• Benefits from multiple

data stream buffers

Optimizations

Pentium 4 with prefetch on

21 © tjELE 455/555 – Spring 2016

Memory Optimization

ARM Cortex A8

32 entry

16K-32KB
4 way

w/ way prediction

128K-1MB
8 way

1-4 bank

virtual
index

physical tag

22 © tjELE 455/555 – Spring 2016

Memory Optimization

4 core

3 level cache

3 channel memory

Intel Core I7

