
ELE 455/555

Computer System Engineering

Section 4 – Parallel Processing

Class 1 – Challenges

2 © tjELE 455/555 – Spring 2016

Parallel Processing

• Motivation

• Desire to provide more performance (processing)

• Scaling a single processor is limited
• Clock speeds

• Power concerns

• Cost (yield)

• A group of multiple smaller processors used in parallel can resolve

these concerns and provide additional flexibility

• Requires effective software to succeed

Introduction

3 © tjELE 455/555 – Spring 2016

Parallel Processing

• Perspective

• Run multiple independent programs on a group of processors
• Independent single-threaded applications

Task-level parallelism

• Single program running on a group of processors simultaneously

Parallel processing program

Introduction

4 © tjELE 455/555 – Spring 2016

Parallel Processing

• Definitions

• Multiple discrete processors

Clusters

• Multiple processors in a single chip

• Individual processors are called Cores

Multi-Core Processor

• These typically share a common physical memory

Shared Memory Processor (SMP)

Introduction

5 © tjELE 455/555 – Spring 2016

Parallel Processing

• Definitions

• Software that performs in a linear fashion
• Compiler, Motor Controller

Sequential Software

• Software that can handle multiple tasks in parallel
• OS, Circuit Simulators

Concurrent Software

Introduction

6 © tjELE 455/555 – Spring 2016

Parallel Processing

• Hardware / Software Compatibility

• Need sequential software to run on both serial and parallel

hardware
• The challenge with parallel hardware is to try to utilize the resources

• Need concurrent software to run on serial and parallel hardware
• The challenge with serial hardware is performance

• The challenge with parallel hardware is to utilize all the resources
• # of parallel processors varies from system to system

Introduction

7 © tjELE 455/555 – Spring 2016

Parallel Processing

• It is difficult to create parallel processing programs

• At the processor level (hardware) we have support via:

• Sub-word parallelism

• Superscalar hardware

• Instruction level parallelism
• Out-of-order, speculation

• Cache coherence

Challenges

8 © tjELE 455/555 – Spring 2016

Parallel Processing

• It is difficult to create parallel processing programs

• We need to create EFFICIENT parallel processing programs

• If the solution isn’t efficient – just use a single processor

• If a single processor is not an option – still need efficiencies to offset

cost, power, complexity

• Need: Faster, Lower Power

Challenges

9 © tjELE 455/555 – Spring 2016

Parallel Processing

• It is difficult to create parallel processing programs

• Many factors limit performance

• Partitioning
• Need equal size tasks, otherwise parts of the system are waiting

• Coordination
• Synchronizing between processors to share data

• Communications overhead
• The actual time to communicate

• Portions of the program that must be run sequentially

Challenges

10 © tjELE 455/555 – Spring 2016

Parallel Processing

• It is difficult to create parallel processing programs

• Example – desire a 90x speedup using 100 processors – what

percentage of the program can be sequential

• Only 0.1% can be sequential

Challenges

Tnew = Tparallelizable/100 + Tsequential

Solving: Fparallelizable = 0.999

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz






11 © tjELE 455/555 – Spring 2016

Parallel Processing

• It is difficult to create parallel processing programs

• Example – calculate 2 sums using 10 and 40 processors

a) 10 scalars - must be sequential

b) 10 x 10 matrix - parallelizable

If done entirely sequential

10 scalars = 10t 10x10 matrix = 100t total = 110t

Using 10 processors (only for the matrix)
10 scalars = 10t 10x10 matrix = 100t/10 = 10t total = 20t speed-up = 110t/20t = 5.5

Using 40 processors (only for the matrix)
10 scalars = 10t 10x10 matrix = 100t/40 = 2.5t total = 12.5t speed-up = 110t/12.5t = 8.8

• We quadrupled the number of processors and got less than 2x speed-up

Challenges

12 © tjELE 455/555 – Spring 2016

Parallel Processing

• It is difficult to create parallel processing programs

• Example – calculate 2 sums using 10 and 40 processors

a) 10 scalars - must be sequential

b) 20 x 20 matrix - parallelizable

If done entirely sequential

10 scalars = 10t 20x20 matrix = 400t total = 410t

Using 10 processors (only for the matrix)
10 scalars = 10t 20x20 matrix = 400t/10 = 40t total = 50t speed-up = 410t/50t = 8.2

Using 40 processors (only for the matrix)
10 scalars = 10t 20x20 matrix = 400t/40 = 10t total = 20t speed-up = 410t/20t = 20.5

• We quadrupled the number of processors and got a little more than 2x

speed-up

Challenges

13 © tjELE 455/555 – Spring 2016

Parallel Processing

• 2 ways to measure the speedup associated with a

parallel processing solution

• Strong Scaling
• Keep the problem size fixed while increasing parallelism

• Fixed customer base using a server farm
• Faster streaming to customer base

• Weak Scaling
• Increase the problem size with increasing parallelism

• ATM processing central office
• More customers, not more ATM transactions per customer

Challenges

14 © tjELE 455/555 – Spring 2016

Parallel Processing

• Scaling Example – strong

• calculate 2 sums using 10 and 100 processors

a) 10 scalars - must be sequential

b) 10 x 10 matrix - parallelizable

If done entirely sequential

10 scalars = 10t 10x10 matrix = 100t total = 110t

Using 10 processors (only for the matrix)
10 scalars = 10t 10x10 matrix = 100t/10 = 10t total = 20t speed-up = 110t/20t = 5.5

Using 100 processors (only for the matrix)
10 scalars = 10t 10x10 matrix = 100t/100 = 1t total = 11t speed-up = 110t/11t = 10

• We achieved 55% of the potential for 10 processors

• We achieved 10% of the potential for 100 processors

Challenges

15 © tjELE 455/555 – Spring 2016

Parallel Processing

• Scaling Example – weak (100x100 matrix)
• calculate 2 sums using 10 and 100 processors

a) 10 scalars - must be sequential

b) 100 x 100 matrix - parallelizable

If done entirely sequential

10 scalars = 10t 100x100 matrix = 10,000t total = 10,010t

Using 10 processors (only for the matrix)
10 scalars = 10t 100x100 matrix = 10,000t/10 = 1000t total = 1010t speed-up =

10010t/1010t = 9.9

Using 100 processors (only for the matrix)
10 scalars = 10t 100x100 matrix = 10,000t/100 = 100t total = 110t speed-up = 10,010t/110t

= 91

• We achieved 99% of the potential for 10 processors

• We achieved 91% of the potential for 100 processors

Challenges

16 © tjELE 455/555 – Spring 2016

Parallel Processing

• Balance Example
• Example – calculate 2 sums using 40 processors

a) 10 scalars - must be sequential

b) 20 x 20 matrix - parallelizable

AND – force 1 parallel processor to carry 2x and 5x the normal load

Using 40 processors (only for the matrix) and a balanced load
10 scalars = 10t 20x20 matrix = 400t/40 = 10t total = 20t speed-up = 410t/20t = 20.5

With unbalanced load of 2x, remaining processor sit idle so just look at this case
10 scalars = 10t 20x20 matrix = max[20t/1, 380t/39] = 20t total = 30t speed-up = 410t/30t =

14

With unbalanced load of 5x, remaining processor sit idle so just look at this case
10 scalars = 10t 20x20 matrix = max[50t/1, 350t/39] = 50t total = 60t speed-up = 410t/60t =

7

• The unbalanced load significantly limits the performance improvement

Challenges

17 © tjELE 455/555 – Spring 2016

Parallel Processing

• 4 Basic Instruction / Data Configurations

Instruction/Data Architectures

18 © tjELE 455/555 – Spring 2016

Parallel Processing

• MIMD

• While we could spread multiple programs across multiple

processors in a MIMD system– the usual case is to spread a single

program’s instructions across multiple processors

Single Program Multiple Data (SPMD)
• Typical application for MIMD

• Use conditional statements to spread portions of the program to

various processors

• May need a copy of the code for each processor

Instruction/Data Architectures

19 © tjELE 455/555 – Spring 2016

Parallel Processing

• MIMD

• While we could spread multiple programs across multiple

processors in a MIMD system– the usual case is to spread a single

program’s instructions across multiple processors

Single Program Multiple Data (SPMD)
• Typical application for MIMD

• Use conditional statements to spread portions of the program to

various processors

• May need a copy of the code for each processor

Instruction/Data Architectures

20 © tjELE 455/555 – Spring 2016

Parallel Processing

• SIMD

• Very much like SISD

• Execution of a single instruction across multiple processors using vector

data

• One PC, n register sets

• Program looks just like a sequential program

• One copy of the code

Instruction/Data Architectures

21 © tjELE 455/555 – Spring 2016

Parallel Processing

• Vector Architecture

• Old days – array of processors

• Now – large register set feeding a pipelined execution unit
• e.g. 32 vector registers, each with 64, 64bit words

• Reduces overhead code
• loops reduced

• Reduces potential hazards

• Reduces fetch bandwidth

• Reduces data bandwidth

• Data with-in a vector must be independent

Instruction/Data Architectures

22 © tjELE 455/555 – Spring 2016

Parallel Processing

• Vector Architecture
• Y = (a x X) + Y

• Conventional MIPS code

l.d $f0,a($sp) ;load scalar a
addiu r4,$s0,#512 ;upper bound of what to load

loop: l.d $f2,0($s0) ;load x(i)
mul.d $f2,$f2,$f0 ;a × x(i)
l.d $f4,0($s1) ;load y(i)
add.d $f4,$f4,$f2 ;a × x(i) + y(i)
s.d $f4,0($s1) ;store into y(i)
addiu $s0,$s0,#8 ;increment index to x
addiu $s1,$s1,#8 ;increment index to y
subu $t0,r4,$s0 ;compute bound
bne $t0,$zero,loop ;check if done

Instruction/Data Architectures

23 © tjELE 455/555 – Spring 2016

Parallel Processing

• Vector Architecture
• Y = (a x X) + Y

• Vector MIPS code

l.d $f0,a($sp) ;load scalar a
lv $v1,0($s0) ;load vector x
mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
lv $v3,0($s1) ;load vector y
addv.d $v4,$v2,$v3 ;add y to product
sv $v4,0($s1) ;store the result

Instruction/Data Architectures

vectors: 64 double precision FP #s

24 © tjELE 455/555 – Spring 2016

Parallel Processing

• Vector Architecture

• Strided Access
• Read every nth element from memory to place in the vector register

• Replaces a n iteration loop

• Gather-scatter
• Read the vector values from around the memory (gather)

• Store the results around the memory (scatter)

Instruction/Data Architectures

25 © tjELE 455/555 – Spring 2016

Parallel Processing

• Vector Architecture

• Lanes
• Parallel combinations of vector pipelines

Instruction/Data Architectures

26 © tjELE 455/555 – Spring 2016

Parallel Processing

• Vector Architecture

• Lanes
• Parallel combinations of vector pipelines

Instruction/Data Architectures

