ELE 455/555
Computer System Engineering

Section 4 — Parallel Processing
Class 1 — Challenges

-

Motivation

Desire to provide more performance (processing)

Scaling a single processor is limited
» Clock speeds

* Power concerns

* Cost (yield)

A group of multiple smaller processors used in parallel can resolve
these concerns and provide additional flexibility

Requires effective software to succeed

ELE 455/555 — Spring 2016 2 © tj

ABA NG It A

* Perspective

« Run multiple independent programs on a group of processors
» Independent single-threaded applications

Task-level parallelism

» Single program running on a group of processors simultaneously

Parallel processing program

ELE 455/555 — Spring 2016 < © tj

BAksindeitr o

y ~ N

o Definitions

« Multiple discrete processors
Clusters
» Multiple processors in a single chip

 Individual processors are called Cores

Multi-Core Processor

» These typically share a common physical memory

Shared Memory Processor (SMP)

ELE 455/555 — Spring 2016 4 ©tj

BAksindeitr o

y ~ N

o Definitions

« Software that performs in a linear fashion
« Compiler, Motor Controller

Sequential Software

« Software that can handle multiple tasks in parallel
* OS, Circuit Simulators

Concurrent Software

ELE 455/555 — Spring 2016 5 ©tj

“-%' .-.‘

AT T

" -0

D ‘ ‘ ;" , \ ‘)
) y 1 1~rt1 . ' | =y

' ! } “'1 .

oﬁ‘ - z’"

Hardware / Software Compatibility

* Need sequential software to run on both serial and parallel
hardware
« The challenge with parallel hardware is to try to utilize the resources

» Need concurrent software to run on serial and parallel hardware
» The challenge with serial hardware is performance

* The challenge with parallel hardware is to utilize all the resources
« # of parallel processors varies from system to system

S Matrix Multiply written in MatLab Windows Vista Operating System
running on an Intel Pentium 4 running on an Intel Pentium 4
Hardware
Matrix Multiply written in MATLAB Windows Vista Operating System
Parallel running on an Intel Core i7 running on an Intel Core i7

ELE 455/555 — Spring 2016 6 Ot

A) G 1

* |t is difficult to create parallel processing programs

» At the processor level (hardware) we have support via:

Sub-word parallelism

Superscalar hardware

Instruction level parallelism
» OQut-of-order, speculation

Cache coherence

ELE 455/555 — Spring 2016 7 © tj

‘) ‘ woo.i.‘\‘.. .
(] .
l

S | .

3 ?
-"1‘0,‘0.”' i
:

:

'

| l ;‘: . . Nﬂ
t‘.) ' ' l 3 zuo

* |t is difficult to create parallel processing programs

 We need to create EFFICIENT parallel processing programs
 |f the solution isn’t efficient — just use a single processor

» |If a single processor is not an option — still need efficiencies to offset
cost, power, complexity

* Need: Faster, Lower Power

ELE 455/555 — Spring 2016 8 © tj

) ., 't
1 (: -
=0

i A -'El

It is difficult to create parallel processing programs

« Many factors limit performance

Partitioning
* Need equal size tasks, otherwise parts of the system are waiting

Coordination
* Synchronizing between processors to share data

Communications overhead
 The actual time to communicate

Portions of the program that must be run sequentially

ELE 455/555 — Spring 2016 9 © tj

* |t is difficult to create parallel processing programs

« Example — desire a 90x speedup using 100 processors — what
percentage of the program can be sequential

Urph-3 Ik

new parallelizable

/100 + T,

sequential

1
)+F

Speedup =

(1-F /100

parallelizable parallelizable

Solving: F =0.999

parallelizable

e Only 0.1% can be sequential

ELE 455/555 — Spring 2016 10 © tj

i ANy e 1 et AU -) ' . IR L AT)

_— . e

™ g - .‘ 1Ay > ~ be -

'S) ’ ’ ‘ 4 gt A) . c. ‘ ' L

” .' ... ‘ . - ' .'
e v

. -
- Darallal D
. ". | J’.l

. ' > A0
e Alleno ‘W , 11 m-' PN Ty
. ’ » L < % ' ! y . - . N ' 4

* |t is difficult to create parallel processing programs

« Example — calculate 2 sums using 10 and 40 processors
a) 10 scalars - must be sequential
b) 10 x 10 matrix - parallelizable

If done entirely sequential
10 scalars = 10t 10x10 matrix = 100t total = 110t

Using 10 processors (only for the matrix)
10 scalars =10t 10x10 matrix = 100t/10 = 10t total =20t speed-up = 110t/20t=5.5

Using 40 processors (only for the matrix)
10 scalars =10t 10x10 matrix = 100t/40 = 2.5t total =12.5t speed-up =110t/12.5t=8.8

« We quadrupled the number of processors and got less than 2x speed-up

ELE 455/555 — Spring 2016 il © tj

i ANy e 1 et AU -) ' . IR L AT)

_“s.‘. g -

- - . i

™ g - .‘ 1Ay > ~ be -

'S) ’ ’ ‘ 4 gt A) . c. ‘ ' L

” .' ... ‘ . . : .'
e v

. -
- Darallal D
. ". | J’.l

. ' > A0
e Alleno ‘W , 11 m-' PN Ty
. ’ » L < % ' ! y . - . N ' 4

* |t is difficult to create parallel processing programs

« Example — calculate 2 sums using 10 and 40 processors
a) 10 scalars - must be sequential
b) 20 x 20 matrix - parallelizable

If done entirely sequential
10 scalars = 10t 20x20 matrix = 400t total = 410t

Using 10 processors (only for the matrix)
10 scalars =10t 20x20 matrix = 400t/10 = 40t total =50t speed-up = 410t/50t = 8.2

Using 40 processors (only for the matrix)
10 scalars =10t 20x20 matrix = 400t/40 = 10t total =20t speed-up = 410t/20t = 20.5

« We quadrupled the number of processors and got a little more than 2x
speed-up

ELE 455/555 — Spring 2016 i © tj

Niiaeib

« 2 ways to measure the speedup associated with a

parallel processing solution

« Strong Scaling
» Keep the problem size fixed while increasing parallelism

» Fixed customer base using a server farm
» [Faster streaming to customer base

« Weak Scaling
* Increase the problem size with increasing parallelism

« ATM processing central office
* More customers, not more ATM transactions per customer

ELE 455/555 — Spring 2016 13

‘bl

©tj

bx gt I .-.‘

ol o
I o4 -1 S
Rl

« Scaling Example — strong

 calculate 2 sums using 10 and 100 processors
a) 10 scalars - must be sequential
b) 10 x 10 matrix - parallelizable

If done entirely sequential
10 scalars = 10t 10x10 matrix = 100t total = 110t

Using 10 processors (only for the matrix)
10 scalars =10t 10x10 matrix = 100t/10 = 10t total =20t speed-up = 110t/20t=5.5

Using 100 processors (only for the matrix)
10 scalars =10t 10x10 matrix = 100t/100 = 1t total = 11t speed-up = 110t/11t = 10

» We achieved 55% of the potential for 10 processors
« We achieved 10% of the potential for 100 processors

ELE 455/555 — Spring 2016 14 © tj

i ANy e 1 et AU -) ' . IR L AT)

-, SR -
™ g - .‘ 1Ay > ~ be -
'S) ’ ’ ‘ 4 gt A) . c. ‘ ' L
” .' " ... ‘ . - ' .'

, ;. .

. -
- Darallal D
. ". | J’.l

e Alleno ‘W , 11 m-' PN Ty
.’ ‘Llc ' ! y . -.‘ '0.

« Scaling Example — weak (100x100 matrix)
 calculate 2 sums using 10 and 100 processors
a) 10 scalars - must be sequential
b) 100 x 100 matrix - parallelizable

If done entirely sequential
10 scalars = 10t 100x100 matrix = 10,000t total = 10,010t

Using 10 processors (only for the matrix)
10 scalars =10t 100x100 matrix = 10,000t/10 = 1000t total = 1010t speed-up =
10010t/1010t=9.9

Using 100 processors (only for the matrix)
10 scalars =10t 100x100 matrix = 10,000t/100 = 100t total = 110t speed-up = 10,010t/110t
=91

» We achieved 99% of the potential for 10 processors
» We achieved 91% of the potential for 100 processors

ELE 455/555 — Spring 2016 15 © tj

.“ - " . . i QNQO“ "Nbeal
. :

"Q »"ﬂ ‘("':1._‘ . _. . - . 9 Oq \0,,.. o.' -

Challenges -

Balance Example
« Example — calculate 2 sums using 40 processors
a) 10 scalars - must be sequential
b) 20 x 20 matrix - parallelizable
AND — force 1 parallel processor to carry 2x and 5x the normal load

Using 40 processors (only for the matrix) and a balanced load
10 scalars =10t 20x20 matrix = 400t/40 = 10t total = 20t speed-up = 410t/20t = 20.5

With unbalanced load of 2x, remaining processor sit idle so just look at this case
10 scalars =10t 20x20 matrix = max[20t/1, 380t/39] = 20t total = 30t speed-up = 410t/30t =
14

With unbalanced load of 5x, remaining processor sit idle so just look at this case
10 scalars =10t 20x20 matrix = max[50t/1, 350t/39] = 50t total = 60t speed-up =410t/60t =
7

* The unbalanced load significantly limits the performance improvement

ELE 455/555 — Spring 2016 16 Ot

AN s & Sl A - ! L DRTETH]Y | LTINSy |

. — - 4 h '_|..

B s 113 o . - .
- Parallel Proc mr et e dieliin s,
| WA L | l' ° - :

e

T Ju “" . [] 11l ...0.‘)
, . . J B

- N .
- .1

"v
\

« 4 Basic Instruction / Data Configurations

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon €5345

ELE 455/555 — Spring 2016 17 © tj

cwdB AN "" 3 11 . NI I
. o . .

.'va Y ~ p‘* q"

" . : -r - Wt B i
Al ‘) 1" y j ..t, : . L .

instruction/Data Archtectres

MIMD

« While we could spread multiple programs across multiple
processors in a MIMD system- the usual case is to spread a single
program’s instructions across multiple processors

Single Program Multiple Data (SPMD)
» Typical application for MIMD

« Use conditional statements to spread portions of the program to
various processors

« May need a copy of the code for each processor

ELE 455/555 — Spring 2016 18 © tj

- > = s e L I . S F &= . L L. & & & . . &

(/) Resource Monitor

File Meonitor Help

| O’ver'.riew| CPU | Memor}rl Disk | Metwork

Processes B 159 CPU Usage [T 105% Maximum Frequency A b {) i
[C] 1mage FID Descrip... Status Threads)CPU Averag.. = CPU - Total
|:| cchveHst exe 2836 Symant... Runni... 72 [u} 0.158 -
[[] dwm.exe 6040 Deskto... Runni... 5 0 005 |7
|:| WmiPrvSE.exe 4500 WHIPr.., Runni. 11 [} 0.04
[] swehost.exe [netsves) 1048 Host Pr... Runni... 45 0 0.04 60 Seconds
[] smc.exe 4868 Symant... Runni... 31 0 0.01 Service CPU Usac
|:| cchvcHst exe 5950 Symant... Runni... 20 [u} 0.01
|:| swchost.exe [LocalServicedn.., 1748 Hast Pr... Runni... 16 Ju} 0.01
|:| swchost.exe [LocalSystemMet... 516 Hast Pr... Runni... 21 Ju} 0.01
|:| HostedAgent.exe 3868 Hosted... Runni... 30 [u} 0.01
|:| taskmgr.exe 44258 Windo... Runni... 7 [} 0.01 CPUO
|:| chrome, exe 7178 Googl.. Runni... 10 [} 0.01
a I |:| Isass.exe 824 Local 5. Runni... 11 [u} 0.01
[) Wh I Id p |:| googledrivesync, exe 7152 Googl. Runni... 27 [u} 0.01
I e We Cou S rea L] |:| Searchindexer.exe 1304 Micros... Runni... 15 Ju} 0.00
o M I M D [T POWERPNT.EXE 2008 Micros... Runni... 14 0 0.00 CPU1 - Parked
processors In a. |:| chrome.exe F124 Googl... Runni... 37 i} 0.00
.] r W |:| SystemWebServer.exe 2528 System... Runni... 32 [} 0.00
prog ram S Instru Ctlons [T] svchost.exe [LocalServiceMet..,, &32 Host Pr... Runni... 19 0 0.00
[] swehost.exe [RPCSS) 454 Host Pr... Runni... 10 0 000 T
Services B 0% CPU Usage A CPU 2
g 3 Mame FID Descrip... Stattls Group CPU Awerag..
Slngle Progral I l MUItIp SepMasterservice 2836 symant... Runni... 0 012
. y] LanmanServer 1048 Server Rurini... netswes [} 0.02
« Typical application for M | smeserice 4868 Symant.. Runni.. o oo CPU3 - Parked
SysMain 516 Superf... Runni... Locals... [u} 0.01
iphlpsvc 1045 IP Helper Runni... MetSves [} 0.01
SSDPSRY 1748 SSDP ... Runni., Locals.. 0 0.01
L Profsvc 1043 User Pr... Runni... netsves 0 0.01
« Use conditional statemny| s« 2 NSyt Runni. o oo
WiSsearch 1304 Windo... Rurini... [} 0.00 i
p Associated Handles Search Handles £ |44 A
Image = PID Type Handle Mame
el _ -L-
Select a process or search handles to see results. ChUS - Parked
- May need a copy of th _
CPUB
ELE 455/555 — Spring 2016 " ——— = | CPU 7 - Parked

A) G 1

* Very much like SISD

» Execution of a single instruction across multiple processors using vector
data

 One PC, n register sets

* Program looks just like a sequential program

* One copy of the code

ELE 455/555 — Spring 2016 20 © tj

; o.'.‘ ‘....‘
R

A L . x '4_ | 1 3
Instruction/Data SR

* Vector Architecture

« Old days — array of processors

 Now — large register set feeding a pipelined execution unit
* e.g. 32 vector registers, each with 64, 64bit words

 Reduces overhead code
* loops reduced

Reduces potential hazards

Reduces fetch bandwidth

Reduces data bandwidth

Data with-in a vector must be independent

ELE 455/555 — Spring 2016 (. © tj

..-- ’ ..’

"" "”\q‘ "/ ’- ""L“N o’r .
.) ' . ‘ 0' " . ‘,.'
'.

ey - " ' on l . nooou T
o

__Inst r-'*ézs; \ = B an o

* Vector Architecture
« Y=(axX)+Y

 Conventional MIPS code

1.d $f0,a($sp) *Toad scalar a

addiu r4,$s0,#512 -upper bound of what to load
lToop: 1.d O($SO) *Toad x(i)

mul.d a x x(1)

1.d ;1load y(1)

add. a x x(1) + y(1)

s.d ;store into y(i)

addiu $sO $s0,#8 increment index to Xx

addiu $s1,$s1,#8 *increment index to y

subu $t0,r4,$sO ; compute bound

bne $t0,$zero,loop ;check if done

ELE 455/555 — Spring 2016 i © tj

ANy e W |
- O o w9
2 DDA s LA N DA
| 1 B | | fa o
- 3 1}' AC AV
:

Instruction/Data

* Vector Architecture
« Y=(axX)+Y

* Vector MIPS code
1.d $f0,a($sp)

Tv $v1,0($s0)
mulvs.d $v2,$vl, $f0
Tv $v3,0($s1)
addv.d $v4,%$v2,$v3
SV $v4,0($s1)

ELE 455/555 — Spring 2016

:load scalar a

-load vector x
;vector-scalar multiply
: load vector y

;add y to product
-store the result

23

vectors: 64 double precision %’tj#s

iAoy b SN |

o - .
- -

.
s 1 .’4,'-"1“.*‘.

™"
| B B = (
-\ § |

00000
-

!l'l!}“" z,..

* Vector Architecture

« Strided Access
» Read every nth element from memory to place in the vector register
* Replaces a n iteration loop

 Gather-scatter

* Read the vector values from around the memory (gather)
« Store the results around the memory (scatter)

ELE 455/555 — Spring 2016 24 © tj

* Vector Architecture

 Lanes
« Parallel combinations of vector pipelines
RIED
A[8] B[8]
Al7] B[7]
A6]| |B[6]
A[5] B[5]
A4)| BE4]
A[3] B[3]
A2l |B[2] A8]| [B[8]| |A[9]| |BI9]
At [Br) A4l (B4l |as)| [BISI| [At6l| [BI6]| (A7) [BI7]
g
C[0]

Element group

(a) (b)
ELE 455/555 — Spring 2016 25 © tj

wABA NGB I ' : - s L

. .‘ "“

* Vector Architecture

« Lanes
« Parallel combinations of vector pipelines

Lane 0 Lane 1 Lane 2 Lane 3
- Ry Y VG N
\ | | |
Vector Vector Vector Vector
registers: registers: registers: registers:
‘elements elements elements elements
LA] A I
- NS S NS S
| \ r /

Vector load store unit

ELE 455/555 — Spring 2016 26 © tj

