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Hardware Multi

 HW Multithreading

« Allow multiple threads to share the same processor

Thread = minimal process

Must retain the state for each thread
- PC

* Registers

- SP

Use virtual memory technique to manage memory spaces

Must be fast — possibly switch every clock cycle
* No OS interaction
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* Fine Grained Multithreading

Switch threads every clock cycle

Interleaved instructions executed in a round-robin fashion

» Any thread (instruction) that is stalled is skipped

Reduces the impacts of long and short stalls

Increases the execution time for every thread
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* Fine Grained Multithreading
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Fine Grained Multithreading
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» Coarse Grained Multithreading

Switch threads on long stalls

Threads execute until they reach a long stall
* e.g. L2 cache miss
* The next thread is started

Reduces the requirement for switching to be super fast

Has penalties associated with pipeline filling on each thread switch
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» Coarse Grained Multithreading

Th;ead T Coarse Grained Multithreading
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« Simultaneous Multithreading (SMT)

« Superscalar version of multithreading

« Assuming a multiple issue, dynamically scheduled pipeline

* The processor has more execution units than some of the threads can
effectively use

Register renaming and dynamic scheduling can handle conflicts between
threads

« Does not “switch” between threads, but is always running multiple
threads and letting the HW figure it out
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Simultaneous Multithreading

Issue slots ——

Thread A Thread B
BN HER
B 1
Superscalar (4 slot) Time ]
w/o HW Multithreading l =
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|
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« Simultaneous Multithreading

2.00 A

Core |7 single processor

| [ Speedup —M— Energy efficiency

with HW support for 2~ &+
threads d
g 1.50 1 7] —
Ave. speedup = 1.31 5
. s ﬂ
Ave. improvement in %31.00 \g \y

energy efficiency = 1.07
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« Simultaneous Multithreading

» Works well with a single processor

« What can we do in a multicore environment?
« How do we share threads?

ELE 455/555 — Spring 2016 il ©tj
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« Two approaches to memory sharing

» Give each processor its own physical address space
« Can share data explicitly
* Requires processors to pass data back and forth
« Message Passing Multiprocessor

e Have processors share a common physical address space
« Data can be shared by reference (memory location)
» Requires a cache coherency mechanism
* Shared Memory Multiprocessor (SMP)

« Still use virtual memory to keep processes separate
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« Shared Memory Multiprocessor

Processor

i

Processor

Cache
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Interconnection Network
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« Shared Memory Multiprocessor

« Uniform Memory Access (UMA)
» All processors have equal delays to access memory
* Non-uniform Memory Access (NUMA)

* Not all processors have equal delays to access memory
» Locality of physical memory

* Modularity (processor clusters and memory controllers)
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« Shared Memory Multiprocessor

« Require synchronization

* Prevent processors from using invalid data
» Currently being worked on

* “lock” the data while in use

« A processor will lock the data while using it and unlock it when done
» No processor can access data that has been locked by another processor

ELE 455/555 — Spring 2016 15 ©tj
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Shared Memory Multiprocessor

« Simple Lock
« Special location in memory attached to the shared data
» |If set — some processor has the data and no one else can access it
* If clear — free to use

« Special instructions required to read/write to shared data
 LL - Load linked, sets a special system bit (LLbit)

« SC - Store Conditional, only does the store if the LLbit is set
* Required since other threads may execute between the LL and SC
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Shared Memory Multiprocessor

#{Semaphore locatad in cache at address rl)

S. | L k } + (if mlocked[ =0 if locked[ X _ =1}
[
I m p e OC I Load semaphore Loop: LL rl,irl}) #12 =- Semaphore
# (Processor will set LLbit)
# (LLbit will be reset if

ORIr3ril -
BEQ r3.r? Loop =
NOP

SC rd,irl) # Try to store samaphore with
£15B chenzed from 0 o 1
# [After completion of SC,
213 =~ if store did not
# succesd; otherwise, 13 <- 1)
= (If 5C successful -
# Imvalidate or Updase
# Flequest to othsr processors
# their LT bit will be reset)
E.E% r30.Lecp # Loop if13=0; and try again

Wes

-
Execute critical section :
(Access 5]13;!1] data) . £ Critical sact
ORIrd,ri, 1
I Unleck semaphore) 5Wrdirl) #El) <12
= (Upgate of Invalidate
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Multiprocessor Programming

 Sum 100,000 numbers on 100 processor UMA
» Each processor has ID: 0 = Pn <99
« Partition 1000 numbers per processor
 [nitial summation on each processor

sum[Pn] =
for (i = 1000*Pn; i < 1000*(Pn+1);i=i+ 1)
sum[Pn] = sum[Pn] + A[i];

 Now need to add these partial sums

« Reduction: divide and conquer

» Half the processors add pairs, then quarter, ...
* Need to synchronize between reduction steps
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« Multiprocessor Programming

0
 Sum 100,000 numbers on 100 processor UMA 1IN

(half = 1) [0][1
_\\
gg'f‘loo' (half = 2) [0][1][2][3
synch(); KQWI
if (half%62 != 0 && Pn == 0) (haif = 4) [o][1][2][3][4][5][6][7

sum[0] = sum[0] + sum[half-1];
[* Conditional sum needed when half is odd;
Processor0 gets missing element */
half = half/2; /* dividing line on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
while (half > 1);
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Parallel Programming Interface

* OpenMP — API for parallel programming
* Pragma — compiler directives

# define P 100 /* define 100 processors */
#pragma omp parallel num_threads(P) /* use 100 threads */

#pragma omp parallel for
for(Pn=0; Pn<P; Pn +=1)
for(i = 1000*Pn; i < 1000*(Pn + 1); i +=1)
sum([Pn] += A[i];

#pragma omp parallel for reduction(+ : FinalSum)
for (i=0; i<P; i +=1)
FinalSum += sum(i]; [* compiler figures out how to minimize effort */
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« Message Passing Multiprocessor

Processor Processor LW Processor
! “ i
Y
Cache Cache - Cache
! “ I
Y
Memory Memory - Memory

i i :

Interconnection Network
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Message Passing Multiprocessor

» Processors send and receive messages back and forth

* send message routine
* receive message routine
* ack

* |nterconnection network
» Local area network (LAN)
 Custom networks

» Most effective when applications have little need to share memory
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« Message Passing Multiprocessor

 Clusters

» Collection of computers configured for message passing
« Communicate via I/O
* Connected through standard network hardware (switches)
« Each with its own copy of the code

» High dependability
» [Easy to replace
+ Easy to expand
* One failure does not impact other nodes
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« Message Passing Multiprocessor

* Clusters

« Familiar examples
* Google search, Amazon, Facebook, Twitter
« Multiple data centers with 10s of 1000s of servers

ELE 455/555 — Spring 2016 24 © tj
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« Warehouse Scale Computers (WSC)

* Clusters taken to the extreme

* Provide support for many users and applications
« Software as a Service (SaaS)

« Additional infrastructure requirements
* Power
« Cooling
* |/O bandwidth

ELE 455/555 — Spring 2016 25 © tj
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« Warehouse Scale Computers (WSC)

WSC vs. Servers

WSC relies on many users and many applications
» Very little coordination needed
» Very few messages between users / applications

Scale leads to operational cost concerns
» 30% of cost may be for infrastructure

Economy of Scale
 Thousands of identical servers leads to volume discounts

Result: Cloud Computing
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* Grid Computing

» Separate computers interconnected by long-haul networks
* E.g., Internet connections
* Work units farmed out, results sent back

 Can make use of idle time on PCs
 E.g., SETI@home, World Community Grid
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« Networking Topologies

Multi core processors require on-chip networks
Clusters require networks

Network cost factors
« # of switches
« # of links / switch
» Width of a link (# of bits)
* Length of link

Network performance factors
* Unloaded / Loaded network latency (send/receive messages)
* Throughput (# messages possible)
* Network contention
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* Networking Topology Metrics

» Total Network Bandwidth

Bandwidth / link x total # of links

» Measure of ideal peak performance

* Bisection Bandwidth

* Cut network in half and measure the bandwidth between the two halves
» Close to the worst case performance

« For asymmetric topologies — choose the worst case bisection
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Processor

memow
 All processors see the same bus content node
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« Some messages may need to “hop” along intermediate nodes

« Multiple transfers can be active at any given time
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* Fully Connected Network

Total Network Bandwidth = P(P-1)/2

Bisection Bandwidth = (P/2)?

» All processors are connected together

» EXpensive
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* Processors connected in a 2-D array
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* N dimensions with processors connected in each dimension
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« Multistage Networks

» Not all nodes have processors
« Use switches to pass along the network
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Crossbar
Unidirectional links

« Multistage Networks
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« Multistage Networks

e Omega
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* Unidirectional links P° ‘
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¢. Omega network switch box
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