AN I

s 0 T i oF | '.‘ A

.
° "
. o z X i
» -
' B

g i:‘

ELE 455/555
Computer System Engineering

Section 4 — Parallel Processing
Class 2 — Architectures



~dhANe) I L)
- O o w9
2 DA v AN DS
| |1 : | ‘ a
-\ i 4}. » \

Hardware Multi

 HW Multithreading

« Allow multiple threads to share the same processor

Thread = minimal process

Must retain the state for each thread
- PC

* Registers

- SP

Use virtual memory technique to manage memory spaces

Must be fast — possibly switch every clock cycle
* No OS interaction

ELE 455/555 — Spring 2016 2 © tj



* Fine Grained Multithreading

Switch threads every clock cycle

Interleaved instructions executed in a round-robin fashion

» Any thread (instruction) that is stalled is skipped

Reduces the impacts of long and short stalls

Increases the execution time for every thread

ELE 455/555 — Spring 2016 3 Ot



AN I

- .‘ ﬁ“ - AN

* Fine Grained Multithreading

Th;ead ey o Fine Grain Multithreading
Time . . . stalls Time

Em <7 =

H B

H H B

H H N N

] ] :

= .<— skip C,D
[ ]

EE <— skipC

N N

ELE 455/555 — Spring 2016 4 © tj



UYL IR

—ry

Fine Grained Multithreading

Thread

® 3 g ; Fine Grain Multithreading Fine Grain Multithreading
ime [l B ./Stalls Time - [ time [
H B O O]
= ]
H B N
HE D -
] _ O]
| N | <— skipC,D
- =
H B skip C -
- m =
H

ELE 455/555 — Spring 2016 5 © tj



» Coarse Grained Multithreading

Switch threads on long stalls

Threads execute until they reach a long stall
* e.g. L2 cache miss
* The next thread is started

Reduces the requirement for switching to be super fast

Has penalties associated with pipeline filling on each thread switch

ELE 455/555 — Spring 2016 6 Ot



» Coarse Grained Multithreading

Th;ead T Coarse Grained Multithreading
Time . . . stalls Time
- 7 =
H B |
H B R B
TR -
[ <—— Thread switch overhead
H BN ]
O O
H BN [
L O

ELE 455/555 — Spring 2016 7 © tj



~e) L1 . 14000 T
o~' .

I l noouh T
iy . &
C

’.‘. . sroy o :
"" ™ - ”\q‘ "I ’-". g .ﬂL"‘N ."‘ 1 > A .
I Al AA ‘ , , J l‘ W ; - ‘“': | .- ‘ - . ) ,0f i
» B .".‘_ (] [TV f'? "l &.L t ! ‘.' =1}

‘ ) MO| r' "’\ "“D

« Simultaneous Multithreading (SMT)

« Superscalar version of multithreading

« Assuming a multiple issue, dynamically scheduled pipeline

* The processor has more execution units than some of the threads can
effectively use

Register renaming and dynamic scheduling can handle conflicts between
threads

« Does not “switch” between threads, but is always running multiple
threads and letting the HW figure it out

ELE 455/555 — Spring 2016 © tj



¥ LR
‘oooo"
.

i

e e
> .

"Progc

:“" " ”*'“I

(l ':'l

la; (' ‘:.4.

. ,r‘-. n!
R g ing

Simultaneous Multithreading

Issue slots ——

Thread A Thread B
BN HER
B 1
Superscalar (4 slot) Time ]
w/o HW Multithreading l =
HEEN
N
|

Issue slots ——

Coarse MT Fine MT
Time [N HE
Superscalar (4 slot) l =-- ===
. . . --
with HW Multithreading EEEE B
HE
| 1| | ]
1
| L1
ELE 455/555 — Spring 2016 [ | [

Wekea i
:

.Oq‘\‘".'rbs' ’Q .

e .',.oof
W' .
" r.

~oooo0

2358

Thread C Thread D

LI

L[]

[

[]

]

SMT

1 1] |

EEE L. evel
Leverages Instruction leve

EEEE & _

—— B parallelism (multiple slots)
1 .
'mm and thread level parallelism

HEER
|

©tj



AN I

1 1 - <8

« Simultaneous Multithreading

2.00 A

Core |7 single processor

| [ Speedup —M— Energy efficiency

with HW support for 2~ &+
threads d
g 1.50 1 7] —
Ave. speedup = 1.31 5
. s ﬂ
Ave. improvement in %31.00 \g \y

energy efficiency = 1.07

2 o NP a
q;‘,l‘% & O« & & & ¥
& S

ELE 455/555 — Spring 2016 10 © tj



BAksindeitr o

« Simultaneous Multithreading

» Works well with a single processor

« What can we do in a multicore environment?
« How do we share threads?

ELE 455/555 — Spring 2016 il ©tj



.~- : - 13 ® ::". . . .
"""’” .“ y ."‘ - v "‘. . . .4 ‘”" '..v.
arallel Processing
L RLD e

adal

"—- " ‘e :
[N -, | ”n | ‘ | IR LT I
‘

_MemoryShaing - F W

« Two approaches to memory sharing

» Give each processor its own physical address space
« Can share data explicitly
* Requires processors to pass data back and forth
« Message Passing Multiprocessor

e Have processors share a common physical address space
« Data can be shared by reference (memory location)
» Requires a cache coherency mechanism
* Shared Memory Multiprocessor (SMP)

« Still use virtual memory to keep processes separate

ELE 455/555 — Spring 2016 i © tj



BAksindeitr o

« Shared Memory Multiprocessor

Processor

i

Processor

Cache

i

i

Cache

t

Processor

;

Cache

Interconnection Network

ELE 455/555 — Spring 2016

:

Memory

13

I/O

©tj



I T

.
J

- -
™"
)

{ ‘ .

-
99

<y
I(
AR
h A

V- ’1;..‘{ g

« Shared Memory Multiprocessor

« Uniform Memory Access (UMA)
» All processors have equal delays to access memory
* Non-uniform Memory Access (NUMA)

* Not all processors have equal delays to access memory
» Locality of physical memory

* Modularity (processor clusters and memory controllers)

ELE 455/555 — Spring 2016 14 ©tj



AN I

« Shared Memory Multiprocessor

« Require synchronization

* Prevent processors from using invalid data
» Currently being worked on

* “lock” the data while in use

« A processor will lock the data while using it and unlock it when done
» No processor can access data that has been locked by another processor

ELE 455/555 — Spring 2016 15 ©tj



i ANy "V' - ) ' . IR L AT )

g -

2 ol om‘y*c qf'
' 1C

Shared Memory Multiprocessor

« Simple Lock
« Special location in memory attached to the shared data
» |If set — some processor has the data and no one else can access it
* If clear — free to use

« Special instructions required to read/write to shared data
 LL - Load linked, sets a special system bit (LLbit)

« SC - Store Conditional, only does the store if the LLbit is set
* Required since other threads may execute between the LL and SC

ELE 455/555 — Spring 2016 16 © tj



AN )L I ' eI ITTTTmIT

Shared Memory Multiprocessor

#{Semaphore locatad in cache at address rl)

S. | L k } + (if mlocked[ =0 if locked[ X _ =1}
[
I m p e OC I Load semaphore Loop: LL rl,irl}) #12 =- Semaphore
# (Processor will set LLbit)
# (LLbit will be reset if

ORIr3ril -
BEQ r3.r? Loop =
NOP

SC rd,irl) # Try to store samaphore with
£15B chenzed from 0 o 1
# [After completion of SC,
213 =~ if store did not
# succesd; otherwise, 13 <- 1)
= (If 5C successful -
# Imvalidate or Updase
# Flequest to othsr processors
# their LT bit will be reset)
E.E% r30.Lecp # Loop if13=0; and try again

Wes

-
Execute critical section :
(Access 5]13;!1] data) . £ Critical sact
ORIrd,ri, 1
I Unleck semaphore) 5Wrdirl) #El) <12
= (Upgate of Invalidate

ELE 455/555 — Spring 2016 17 © tj



i ANy "' ' Y35 . IR L AT )
ey ‘ .- e I - . i
' | C

- .
J

, l
““!”‘lﬁ Ic-d

Multiprocessor Programming

 Sum 100,000 numbers on 100 processor UMA
» Each processor has ID: 0 = Pn <99
« Partition 1000 numbers per processor
 [nitial summation on each processor

sum[Pn] =
for (i = 1000*Pn; i < 1000*(Pn+1);i=i+ 1)
sum[Pn] = sum[Pn] + A[i];

 Now need to add these partial sums

« Reduction: divide and conquer

» Half the processors add pairs, then quarter, ...
* Need to synchronize between reduction steps

ELE 455/555 — Spring 2016 18 © tj



AN b & Je b Y321 L : 0000005 Wekea i
—— tesg? ) WS

,". *’ ”\Q‘ "»l} "0 ‘. ‘.' .'. o.‘ .,, .g‘. ' - B
| . - . - p .' ‘
1 &" A e
‘e ! '
__Progr "“':&: ' -1 | AP

- ..

« Multiprocessor Programming

0
 Sum 100,000 numbers on 100 processor UMA 1IN

(half = 1) [0][1
_\\
gg'f‘loo' (half = 2) [0][1][2][3
synch(); KQWI
if (half%62 != 0 && Pn == 0) (haif = 4) [o][1][2][3][4][5][6][7

sum[0] = sum[0] + sum[half-1];
[* Conditional sum needed when half is odd;
Processor0 gets missing element */
half = half/2; /* dividing line on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
while (half > 1);

ELE 455/555 — Spring 2016 19 © tj



i ANy "' - ) ' . IR L AT )

-AO\ e I - . .

v -1 opﬁw*( “'
' A U 1C

Y,
PI(

(‘1‘ '1i‘l&l

Parallel Programming Interface

* OpenMP — API for parallel programming
* Pragma — compiler directives

# define P 100 /* define 100 processors */
#pragma omp parallel num_threads(P) /* use 100 threads */

#pragma omp parallel for
for(Pn=0; Pn<P; Pn +=1)
for(i = 1000*Pn; i < 1000*(Pn + 1); i +=1)
sum([Pn] += A[i];

#pragma omp parallel for reduction(+ : FinalSum)
for (i=0; i<P; i +=1)
FinalSum += sum(i]; [* compiler figures out how to minimize effort */

ELE 455/555 — Spring 2016 20 © tj



BAksindeitr o

« Message Passing Multiprocessor

Processor Processor LW Processor
! “ i
Y
Cache Cache - Cache
! “ I
Y
Memory Memory - Memory

i i :

Interconnection Network

ELE 455/555 — Spring 2016 (. ©tj



A B
- - O\.«-O. - ‘
N a i ] ¢
s ‘ g .4.' ": [ ™" a >
-\ i | \

VA
' .
"

1)
ory Sharing l ! Z:J

Message Passing Multiprocessor

» Processors send and receive messages back and forth

* send message routine
* receive message routine
* ack

* |nterconnection network
» Local area network (LAN)
 Custom networks

» Most effective when applications have little need to share memory

ELE 455/555 — Spring 2016 22 Ot



« Message Passing Multiprocessor

 Clusters

» Collection of computers configured for message passing
« Communicate via I/O
* Connected through standard network hardware (switches)
« Each with its own copy of the code

» High dependability
» [Easy to replace
+ Easy to expand
* One failure does not impact other nodes

ELE 455/555 — Spring 2016 23 © tj



BAhsindeitiiio

i3
il

fE

n

i
ng’
.~

-

]

« Message Passing Multiprocessor

* Clusters

« Familiar examples
* Google search, Amazon, Facebook, Twitter
« Multiple data centers with 10s of 1000s of servers

ELE 455/555 — Spring 2016 24 © tj



g

g

« Warehouse Scale Computers (WSC)

* Clusters taken to the extreme

* Provide support for many users and applications
« Software as a Service (SaaS)

« Additional infrastructure requirements
* Power
« Cooling
* |/O bandwidth

ELE 455/555 — Spring 2016 25 © tj



cwdB AN "" ' 1 & 1 . TN AT

" Parallel I

.
‘%

.l‘."‘

~ Warehouse
. ‘ - ..

« Warehouse Scale Computers (WSC)

WSC vs. Servers

WSC relies on many users and many applications
» Very little coordination needed
» Very few messages between users / applications

Scale leads to operational cost concerns
» 30% of cost may be for infrastructure

Economy of Scale
 Thousands of identical servers leads to volume discounts

Result: Cloud Computing

ELE 455/555 — Spring 2016 26 © tj



A ) G 1

* Grid Computing

» Separate computers interconnected by long-haul networks
* E.g., Internet connections
* Work units farmed out, results sent back

 Can make use of idle time on PCs
 E.g., SETI@home, World Community Grid

ELE 455/555 — Spring 2016 27 © tj



‘ ) SR E
TA
oﬁi . z’!'

—— e 4

« Networking Topologies

Multi core processors require on-chip networks
Clusters require networks

Network cost factors
« # of switches
« # of links / switch
» Width of a link (# of bits)
* Length of link

Network performance factors
* Unloaded / Loaded network latency (send/receive messages)
* Throughput (# messages possible)
* Network contention

ELE 455/555 — Spring 2016 28 Ot



* Networking Topology Metrics

» Total Network Bandwidth

Bandwidth / link x total # of links

» Measure of ideal peak performance

* Bisection Bandwidth

* Cut network in half and measure the bandwidth between the two halves
» Close to the worst case performance

« For asymmetric topologies — choose the worst case bisection

ELE 455/555 — Spring 2016 29 Ot



BAksindeitr o

il o g o 0 e

Processor

memow
 All processors see the same bus content node

ELE 455/555 — Spring 2016 30 © tj



AN I

1 1 - <8

. ,'c" Lr'] 't,

« Some messages may need to “hop” along intermediate nodes

« Multiple transfers can be active at any given time

ELE 455/555 — Spring 2016 31 © tj



ABA NG It A

* Fully Connected Network

Total Network Bandwidth = P(P-1)/2

Bisection Bandwidth = (P/2)?

» All processors are connected together

» EXpensive

ELE 455/555 — Spring 2016 32 © tj



A ) G 1

e

* Processors connected in a 2-D array

ELE 455/555 — Spring 2016 33 © tj



BAhsindeitiiio

i3
il

A
E.8 .2 A

n

]

* N dimensions with processors connected in each dimension

ELE 455/555 — Spring 2016 34 © tj



BAiAssindeitiio

« Multistage Networks

» Not all nodes have processors
« Use switches to pass along the network

ELE 455/555 — Spring 2016 35 © tj



..\.dwd

E__E

AN I

©tj

LATRVL AV AL TN

akakakakakakaka
yhakalalalalakaka
akakakakakakaka
Jkakakakalalakale
akakakakakakaka
ipalalakakalakakals

36

Pl %6| Fapts 95
Nraiabdhaishabaiabs

2
4
6

P
P
P

.
[
-

-
-
-
-
e
-

‘ i
I:’O

Crossbar
Unidirectional links

« Multistage Networks

ELE 455/555 — Spring 2016



A ) G 1

« Multistage Networks

e Omega
| P S Ly
* Unidirectional links P° ‘

> Py >
> P2—— F >
> P3—__ L=
- P4— -
Iy = P5— | IS
"—‘ - P6_ >

A | c
B |ty D Eiyd el

¢. Omega network switch box

ELE 455/555 — Spring 2016 37 © tj



