
ELE 455/555

Computer System Engineering

Section 4 – Parallel Processing

Class 2 – Architectures



2 © tjELE 455/555 – Spring 2016

Parallel Processing

• HW Multithreading

• Allow multiple threads to share the same processor

• Thread = minimal process

• Must retain the state for each thread
• PC

• Registers

• SP

• Use virtual memory technique to manage memory spaces

• Must be fast – possibly switch every clock cycle
• No OS interaction

Hardware Multithreading



3 © tjELE 455/555 – Spring 2016

Parallel Processing

• Fine Grained Multithreading

• Switch threads every clock cycle

• Interleaved instructions executed in a round-robin fashion

• Any thread (instruction) that is stalled is skipped

• Reduces the impacts of long and short stalls

• Increases the execution time for every thread

Hardware Multithreading



4 © tjELE 455/555 – Spring 2016

Parallel Processing

• Fine Grained Multithreading

Hardware Multithreading

Thread
A B C D

Time

Fine Grain Multithreading

Time

skip C,D

skip C

stalls



5 © tjELE 455/555 – Spring 2016

Parallel Processing

• Fine Grained Multithreading

Hardware Multithreading

Thread
A B C D

Time

Fine Grain Multithreading

Time

skip C,D

skip C

stalls

Fine Grain Multithreading

Time



6 © tjELE 455/555 – Spring 2016

Parallel Processing

• Coarse Grained Multithreading

• Switch threads on long stalls

• Threads execute until they reach a long stall
• e.g. L2 cache miss

• The next thread is started

• Reduces the requirement for switching to be super fast

• Has penalties associated with pipeline filling on each thread switch

Hardware Multithreading



7 © tjELE 455/555 – Spring 2016

Parallel Processing

• Coarse Grained Multithreading

Hardware Multithreading

Thread
A B C D

Time

Coarse Grained Multithreading

Time

Thread switch overhead

stalls



8 © tjELE 455/555 – Spring 2016

Parallel Processing

• Simultaneous Multithreading (SMT)

• Superscalar version of multithreading

• Assuming a multiple issue, dynamically scheduled pipeline

• The processor has more execution units than some of the threads can 

effectively use

• Register renaming and dynamic scheduling can handle conflicts between 

threads

• Does not “switch” between threads, but is always running multiple 

threads and letting the HW figure it out

Hardware Multithreading



9 © tjELE 455/555 – Spring 2016

Parallel Processing

• Simultaneous Multithreading

Hardware Multithreading

Superscalar (4 slot)
w/o HW Multithreading

Superscalar (4 slot)
with HW Multithreading

SMT
Leverages Instruction level
parallelism (multiple slots)
and thread level parallelism



10 © tjELE 455/555 – Spring 2016

Parallel Processing

• Simultaneous Multithreading

Core I7 single processor

with HW support for 2 

threads

Ave. speedup = 1.31

Ave. improvement in

energy efficiency = 1.07

Hardware Multithreading



11 © tjELE 455/555 – Spring 2016

Parallel Processing

• Simultaneous Multithreading

• Works well with a single processor

• What can we do in a multicore environment?
• How do we share threads?

Hardware Multithreading



12 © tjELE 455/555 – Spring 2016

Parallel Processing

• Two approaches to memory sharing

• Give each processor its own physical address space
• Can share data explicitly 

• Requires processors to pass data back and forth

• Message Passing Multiprocessor

• Have processors share a common physical address space
• Data can be shared by reference (memory location)

• Requires a cache coherency mechanism

• Shared Memory Multiprocessor (SMP)

• Still use virtual memory to keep processes separate

Memory Sharing



13 © tjELE 455/555 – Spring 2016

Parallel Processing

• Shared Memory Multiprocessor

Memory Sharing



14 © tjELE 455/555 – Spring 2016

Parallel Processing

• Shared Memory Multiprocessor

• Uniform Memory Access (UMA)

• All processors have equal delays to access memory

• Non-uniform Memory Access (NUMA)

• Not all processors have equal delays to access memory

• Locality of physical memory

• Modularity (processor clusters and memory controllers)

Memory Sharing



15 © tjELE 455/555 – Spring 2016

Parallel Processing

• Shared Memory Multiprocessor

• Require synchronization
• Prevent processors from using invalid data

• Currently being worked on

• “lock” the data while in use
• A processor will lock the data while using it and unlock it when done

• No processor can access data that has been locked by another processor

Memory Sharing



16 © tjELE 455/555 – Spring 2016

Parallel Processing

• Shared Memory Multiprocessor

• Simple Lock
• Special location in memory attached to the shared data 

• If set – some processor has the data and no one else can access it

• If clear – free to use

• Special instructions required to read/write to shared data
• LL – Load linked, sets a special system bit (LLbit)

• SC – Store Conditional, only does the store if the LLbit is set
• Required since other threads may execute between the LL and SC

Memory Sharing



17 © tjELE 455/555 – Spring 2016

Parallel Processing

• Shared Memory Multiprocessor

• Simple Lock

Memory Sharing



18 © tjELE 455/555 – Spring 2016

Parallel Processing

• Multiprocessor Programming

• Sum 100,000 numbers on 100 processor UMA
• Each processor has ID: 0 ≤ Pn ≤ 99

• Partition 1000 numbers per processor

• Initial summation on each processor

sum[Pn] = 0;

for (i = 1000*Pn; i < 1000*(Pn+1); i = i + 1)

sum[Pn] = sum[Pn] + A[i];

• Now need to add these partial sums

• Reduction: divide and conquer

• Half the processors add pairs, then quarter, …

• Need to synchronize between reduction steps

Programming



19 © tjELE 455/555 – Spring 2016

Parallel Processing

• Multiprocessor Programming

• Sum 100,000 numbers on 100 processor UMA

half = 100;

do

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

while (half > 1);

Programming



20 © tjELE 455/555 – Spring 2016

Parallel Processing

• Parallel Programming Interface

• OpenMP – API for parallel programming
• Pragma – compiler directives

# define P 100 /* define 100 processors */

#pragma  omp parallel  num_threads(P)      /* use 100 threads */

#pragma  omp parallel for

for (Pn = 0; Pn < P; Pn += 1)

for(i = 1000*Pn; i < 1000*(Pn + 1); i += 1)

sum[Pn] += A[i];

#pragma  omp parallel  for  reduction(+ : FinalSum)

for (i=0; i<P; i += 1)

FinalSum += sum[i]; /* compiler figures out how to minimize effort */

Programming



21 © tjELE 455/555 – Spring 2016

Parallel Processing

• Message Passing Multiprocessor

Memory Sharing



22 © tjELE 455/555 – Spring 2016

Parallel Processing

• Message Passing Multiprocessor

• Processors send and receive messages back and forth

• send message routine

• receive message routine

• ack

• Interconnection network
• Local area network (LAN)

• Custom networks

• Most effective when applications have little need to share memory

Memory Sharing



23 © tjELE 455/555 – Spring 2016

Parallel Processing

• Message Passing Multiprocessor

• Clusters

• Collection of computers configured for message passing
• Communicate via I/O

• Connected through standard network hardware (switches)

• Each with its own copy of the code

• High dependability
• Easy to replace

• Easy to expand

• One failure does not impact other nodes

Memory Sharing



24 © tjELE 455/555 – Spring 2016

Parallel Processing

• Message Passing Multiprocessor

• Clusters

• Familiar examples
• Google search, Amazon, Facebook, Twitter

• Multiple data centers with 10s of 1000s of servers

Memory Sharing



25 © tjELE 455/555 – Spring 2016

Parallel Processing

• Warehouse Scale Computers (WSC)

• Clusters taken to the extreme

• Provide support for many users and applications
• Software as a Service (SaaS)

• Additional infrastructure requirements
• Power

• Cooling

• I/O bandwidth

Warehouse Scale Computing



26 © tjELE 455/555 – Spring 2016

Parallel Processing

• Warehouse Scale Computers (WSC)

• WSC vs. Servers

• WSC relies on many users and many applications
• Very little coordination needed

• Very few messages between users / applications

• Scale leads to operational cost concerns
• 30% of cost may be for infrastructure

• Economy of Scale
• Thousands of identical servers leads to volume discounts

• Result: Cloud Computing

Warehouse Scale Computing



27 © tjELE 455/555 – Spring 2016

Parallel Processing

• Grid Computing

• Separate computers interconnected by long-haul networks
• E.g., Internet connections

• Work units farmed out, results sent back

• Can make use of idle time on PCs
• E.g., SETI@home, World Community Grid

Grid Computing



28 © tjELE 455/555 – Spring 2016

Parallel Processing

• Networking Topologies

• Multi core processors require on-chip networks

• Clusters require networks

• Network cost factors
• # of switches

• # of links / switch

• Width of a link (# of bits)

• Length of link

• Network performance factors
• Unloaded / Loaded network latency (send/receive messages)

• Throughput (# messages possible)

• Network contention

Network Topologies



29 © tjELE 455/555 – Spring 2016

Parallel Processing

• Networking Topology Metrics

• Total Network Bandwidth

Bandwidth / link   x   total # of links

• Measure of ideal peak performance

• Bisection Bandwidth

• Cut network in half and measure the bandwidth between the two halves

• Close to the worst case performance

• For asymmetric topologies – choose the worst case bisection

Network Topologies



30 © tjELE 455/555 – Spring 2016

Parallel Processing

• Bus

• All processors see the same bus content

Network Topologies

Processor 
memory 
node

SwitchLink



31 © tjELE 455/555 – Spring 2016

Parallel Processing

• Ring

• Some messages may need to “hop” along intermediate nodes

• Multiple transfers can be active at any given time

Network Topologies



32 © tjELE 455/555 – Spring 2016

Parallel Processing

• Fully Connected Network

• All processors are connected together

• Expensive

Network Topologies

Total Network Bandwidth = P(P-1)/2

Bisection Bandwidth = (P/2)2



33 © tjELE 455/555 – Spring 2016

Parallel Processing

• 2D Mesh

• Processors connected in a 2-D array

Network Topologies



34 © tjELE 455/555 – Spring 2016

Parallel Processing

• N-Cube

• N dimensions with processors connected in each dimension

Network Topologies



35 © tjELE 455/555 – Spring 2016

Parallel Processing

• Multistage Networks

• Not all nodes have processors

• Use switches to pass along the network

Network Topologies



36 © tjELE 455/555 – Spring 2016

Parallel Processing

• Multistage Networks

• Crossbar

• Unidirectional links

Network Topologies



37 © tjELE 455/555 – Spring 2016

Parallel Processing

• Multistage Networks

• Omega

• Unidirectional links

Network Topologies


