
ELE 455/555

Computer System Engineering

Section 4 – Parallel Processing

Class 3 – GPUs

2 © tjELE 455/555 – Spring 2016

Parallel Processing

• GPU Video

Graphics Processor Units

3 © tjELE 455/555 – Spring 2016

Parallel Processing

• Graphics Processing Unit (GPU)

• Optimized processor for computing 2D and 3D graphics objects

• 2D/3D graphics

• Images

• Video

• Used in

• Window based operating systems

• Graphical user interfaces

• Video games

• Highly parallel, highly multithreaded multiprocessor

Graphics Processor Units

4 © tjELE 455/555 – Spring 2016

Parallel Processing

• Graphics Pipeline

Graphics Processor Units

src: Journal of Statistical Mechanics (2009)P06016

5 © tjELE 455/555 – Spring 2016

Parallel Processing

• Graphics Pipeline

• Vertex
• Location (point) in 3D space on the graphics object

• Includes: location, color, texture, motion, … information

• Vertex Shader
• Operations performed on each vertex

• Transform 3D location to 2D screen location

• Includes “Z” processing to emulate depth on the screen

Graphics Processor Units

6 © tjELE 455/555 – Spring 2016

Parallel Processing

• Graphics Pipeline

• Geometry
• Point, line or triangle created from the vertices

• Includes: location, color, texture, motion, … information

• Geometry Shader
• Operations performed on each geometry

• Creation of the geometry

• Combine or divide geometries

• Add or delete geometries based on detail requirements (zoom)

Graphics Processor Units

7 © tjELE 455/555 – Spring 2016

Parallel Processing

• Graphics Pipeline

• Pixel
• Smallest render unit on the screen

• Pixel Shader
• Operations performed on each pixel

• Color

• Texture mapping

• Lighting

Graphics Processor Units

8 © tjELE 455/555 – Spring 2016

Parallel Processing

• Graphics Pipeline

Graphics Processor Units

9 © tjELE 455/555 – Spring 2016

Parallel Processing

• Graphics Pipeline

Graphics Processor Units

10 © tjELE 455/555 – Spring 2016

Parallel Processing

• History

• 1990s - Video Graphics Array controller (VGA)
• Memory controller used to paint to the screen

• 2000 - Integration allowed most of the processing to happen in the

GPU using fixed hardware
• Triangle setup, rasterization, texture mapping

• Fixed hardware was replaced with programmable hardware

• Programmable hardware was consolidated into a multithreaded

multiprocessor architecture

• 2010 – Additional capability added to support general computing

operations

Graphics Processor Units

11 © tjELE 455/555 – Spring 2016

Parallel Processing

• Application Programming Interface (API)

• Allow programmers to write to the API and not be concerned about

the underlying hardware

• Allow the underlying hardware to progress at a rapid pace

• OpenGL
• Open standard

• Broadly available

• DirectX
• Microsoft APIs

Graphics Processor Units

12 © tjELE 455/555 – Spring 2016

Parallel Processing

• Heterogeneous system

• GPUs used as co-processors for the main CPU

• Early implementation

Graphics Processor Units

13 © tjELE 455/555 – Spring 2016

Parallel Processing

• Heterogeneous system

• GPUs used as co-processors for the main CPU

• Current implementation

Graphics Processor Units

14 © tjELE 455/555 – Spring 2016

Parallel Processing

• Heterogeneous system

• GPUs used as co-processors for the main CPU

• Current wireless implementation

Graphics Processor Units

15 © tjELE 455/555 – Spring 2016

Parallel Processing

• Unified GPU Architecture

Graphics Processor Units

multiple programmable processors
mapped to a single processor

16 © tjELE 455/555 – Spring 2016

Parallel Processing

• Unified GPU Architecture

• Built from a parallel array of unified processors

• Tightly coupled with fixed function processors
• rasterization, compression, video decoding, …

• Focus is on executing large numbers of parallel threads on large

numbers of cores

• Utilize multithreading to hide memory latency instead of using

multi-level caches

Graphics Processor Units

17 © tjELE 455/555 – Spring 2016

Parallel Processing

• Unified GPU Architecture

• Streaming Processor Core

• Pipelined

• Superscalar

• Highly Multithreaded
• 96 Concurrent Threads

• Hardware managed

• 1024, 32bit registers

Graphics Processor Units

Nvidia Tesla

18 © tjELE 455/555 – Spring 2016

Parallel Processing

• Unified GPU Architecture

• Streaming Multiprocessor
• 8 Streaming Processor Cores (SP)

• 2 Special Function Units (SFU)
• Transcendentals (sin, cos, log, exp, …)

• Instruction Cache

• Constant Cache

• Multithreaded Issue unit

• Shared memory

• Texture Processor Cluster
• 2 Streaming Multiprocessors

• Controller

• Texture Unit

Graphics Processor Units

Nvidia Tesla

19 © tjELE 455/555 – Spring 2016

Parallel Processing

• Unified GPU Architecture

Graphics Processor Units

Nvidia Tesla

20 © tjELE 455/555 – Spring 2016

Parallel Processing

• Programming – CUDA

• C like code is written in serial fashion

• Code calls parallel Kernals
• Kernals are parallelizable functions, blocks, programs

• Kernels execute across parallel processors as a set of threads

• Threads are organized into Thread Blocks
• Sets of concurrent threads that can work together

• Through synchronization or shared private memory

• Independent thread blocks are grouped together as a Grid
• Can be executed in parallel

Graphics Processor Units

21 © tjELE 455/555 – Spring 2016

Parallel Processing

• Programming – CUDA

• 3 Abstractions
• Thread Groups

• Shared Memories

• Barrier Synchronization

• Kernals
• Functions or entire programs whose

operations can be done in parallel

• Specifies # of Blocks and # of threads/block

in a grid

• Blocks blockIDx

• Threads threadIDz

Graphics Processor Units

22 © tjELE 455/555 – Spring 2016

Parallel Processing

• Programming – CUDA

Graphics Processor Units

23 © tjELE 455/555 – Spring 2016

Parallel Processing

• Programming – CUDA

• All parallelization is handled by the processor
• Thread management is handled by hardware

Graphics Processor Units

Indicates the following is a kernel

Code segment that can
be run in parallel

Invoke the kernel

24 © tjELE 455/555 – Spring 2016

Parallel Processing

• Programming – CUDA

• Synchronization

• A synchronization barrier can be created - _syncthreads_

• No thread can pass the barrier until all threads reach the barrier

• Applies to threads with-in a block

• Thread blocks cannot be directly synchronized
• Blocks must be able to operate independently

• Can synchronize by using atomic memory processes

• Can synchronize grids

Graphics Processor Units

25 © tjELE 455/555 – Spring 2016

Parallel Processing

• GPU Memory Considerations

• Each thread has its own context
• PC, registers

• Each thread has its own private local memory
• For anything that does not fit in its registers – incl. stack

• Each thread block has a shared memory
• Visible to all threads in the block

• Exists as long as the block exists

• On chip ram

• All threads have access to global memory
• Grids pass data via global memory

• DRAM

Graphics Processor Units

26 © tjELE 455/555 – Spring 2016

Parallel Processing

• GPU Memory Considerations

Graphics Processor Units

communication

27 © tjELE 455/555 – Spring 2016

Parallel Processing

• Using the GPU as a SIMT Multi-processor

• Architecture already supports multiple kernel (programs) running

via multiple threads

• Define a Warp to be a set of threads running the same instruction

• Tesla
• 32 threads/wrap

• Hardware managed

Graphics Processor Units

28 © tjELE 455/555 – Spring 2016

Parallel Processing

• Performance
• Matrix multiplication

• GPU: 1.35GHz

• CPU: 2.4GHz

Graphics Processor Units

29 © tjELE 455/555 – Spring 2016

Parallel Processing

• Performance
• Matrix factorization

• GPU: 1.35GHz

• CPU: 2.4GHz

Graphics Processor Units

30 © tjELE 455/555 – Spring 2016

Parallel Processing

• Nvidia Kepler

• 192 cores

Graphics Processor Units

31 © tjELE 455/555 – Spring 2016

Parallel Processing

• Huang Video

Graphics Processor Units

