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Parallel Processing

• Benchmarks

• Targeted at various aspects of parallel programs

• Linpack: 
• Matrix linear algebra

• SPECrate: 
• Parallel run of SPEC CPU programs

• Job-level parallelism

• SPLASH: Stanford Parallel Applications for Shared Memory
• Mix of kernels and applications, strong scaling

• NAS (NASA Advanced Supercomputing) suite
• Computational fluid dynamics kernels

• PARSEC (Princeton Application Repository for Shared Memory 

Computers) suite
• Multithreaded applications using Pthreads and OpenMP

Performance



3 © tjELE 455/555 – Spring 2016

Parallel Processing

• Benchmarks

• Parallelism makes comparing systems even harder

• Scale the data?

• Algorithm changes
• Might you attack the problem differently based on your resources

• UCB approach
• Identify the design patterns that will be part of near future applications

• Implement them any way you want

Performance
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Parallel Processing

• Models

• Floating point operations are part of many implementations

• Arithmetic Intensity
• Ratio of FLOPs to memory accesses (bytes)

• Relative order of Arithmetic Intensity

Performance
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Parallel Processing

• Models

• Stream Benchmark

• Measures the memory performance for large data structures that do not 

fit in the cache

• A good measure for our multiprocessing systems

• Measures peak memory performance

Performance

FLOP/s

Arithmetic Intensity (FLOPs/Byte)

Peak Memory BW (stream)
1:1 line through the point (1,peak BW)
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Parallel Processing

• Models

• Stream Benchmark

Performance

1/2

1

1/4

2

4

8

16

64

Arithmetic Intensity - FLOPS/Byte

G
FL

O
P

/s

1 2 4 8 16 32

32

64

128

Peak memory BW = 16GB/s

Peak memory BW = 4GB/s

If your arithmetic intensity is 4 FLOPS/Byte
AND
Your peak memory BW = 4GB/s
THEN
Your potential FLOPS/s = 16GFLOPS/s



7 © tjELE 455/555 – Spring 2016

Parallel Processing

• Models

• Peak Floating Point Performance

• Processor dependent
• max clock rate

• no stalls

Performance

FLOP/s

Arithmetic Intensity (FLOPs/Byte)
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(processor specs)
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Parallel Processing

• Models

• Roofline Model

• Peak Memory and Floating Point performance plotted together

Performance

FLOP/s

Arithmetic Intensity (FLOPs/Byte)

Log2

Log2

Peak Floating Point Performance
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Parallel Processing

• Models

• Roofline Model

• Peak Floating Point Performance vs. Arithmetic Intensity

Performance



10 © tjELE 455/555 – Spring 2016

Parallel Processing

• Example

• Opteron X2
• 2 cores

• 1 FLOP/core

• 2.2GHz

• Opteron X4
• 4 cores

• 2 FLOP/core

• 2.3GHz

• Expect 4x peak performance
• x4 has an L3 cache

Performance
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Parallel Processing

• Kernel Optimizations

• Roofline is a maximum possible, you may get less

• Computational Bottlenecks

• Floating Point Operations mix
• Imbalance in Floating point instructions vs. adds

• Pipeline has balanced FP and Add structures

• Need balance to fully utilize the ALU

• Improve Instruction Level Parallelism (ILP)
• Superscalar architectures need multiple instructions to leverage multi-issue 

resources

Performance
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Parallel Processing

• Kernel Optimizations

• Computational Bottlenecks

• Floating Point Operations mix
• potential 2x improvement

• Improve ILP
• potential 4x improvement

• ILP first, then mix

Performance
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Parallel Processing

• Kernel Optimizations

• Roofline is a maximum possible, you may get less

• Memory Bottlenecks

• Software Prefetching
• Need to predict data needs to reduce stalls

• Special instructions required to load data into the cache before it is needed

• Memory Affinity
• Leverage NUMA characteristics

• Tie threads to processor / closest memory pairs

• Try to keep a processor accesses to the lowest latency memory

Performance
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Parallel Processing

• Kernel Optimizations

• Memory Bottlenecks

• Software Prefetching
• potential 50% improvement

• Memory Affinity
• potential 2.66x improvement

• Affinity first, then pre-fetching

Performance
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Parallel Processing

• Kernel Optimizations

• Operating Region determines where to optimize

Performance
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Parallel Processing

• Example

• Core I7

• GTX 280

Performance
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Parallel Processing

• I7-960 vs. GTX280

• Double Precision FP

Performance
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Parallel Processing

• I7-960 vs. GTX280

• Single Precision FP

Performance
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Parallel Processing

• I7-960 vs. GTX280

Performance

Large data sets (memory BW)

Transcendentals (Native in GTX)

Scattered data

Significant single precision
Floating Point content

High synchronization demands
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ELE455/555

Semester Review

Quick Review of the Semester
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• ALU – Implementation

ELE 455/555

Semester Review
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ELE 455/555

• Datapath Control – BEQ

Semester Review

Instruction RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

LW X 0 X 0 0 0 1 0 1
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ELE 455/555

• Exceptions in a Pipeline - example

Semester Review
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ELE 455/555

Semester Review
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ELE 455/555

• Cortex A8

Semester Review

5 stages to detect and avoid hazards, create packets 

aggressive address (branch) prediction

gives decoder lots of options

full bypassing of dependencies

can come from either issue

must come from specified issue

6 stages EX WB
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ELE 455/555

• Nvidia Kepler

• 192 cores

Semester Review
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ELE 455/555

Semester Review
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ELE 455/555

Semester Review
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ELE 455/555

Semester Review
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ELE 455/555

Semester Review
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