
ELE 455/555

Computer System Engineering

Section 4 – Parallel Processing

Class 4 – Performance

2 © tjELE 455/555 – Spring 2016

Parallel Processing

• Benchmarks

• Targeted at various aspects of parallel programs

• Linpack:
• Matrix linear algebra

• SPECrate:
• Parallel run of SPEC CPU programs

• Job-level parallelism

• SPLASH: Stanford Parallel Applications for Shared Memory
• Mix of kernels and applications, strong scaling

• NAS (NASA Advanced Supercomputing) suite
• Computational fluid dynamics kernels

• PARSEC (Princeton Application Repository for Shared Memory

Computers) suite
• Multithreaded applications using Pthreads and OpenMP

Performance

3 © tjELE 455/555 – Spring 2016

Parallel Processing

• Benchmarks

• Parallelism makes comparing systems even harder

• Scale the data?

• Algorithm changes
• Might you attack the problem differently based on your resources

• UCB approach
• Identify the design patterns that will be part of near future applications

• Implement them any way you want

Performance

4 © tjELE 455/555 – Spring 2016

Parallel Processing

• Models

• Floating point operations are part of many implementations

• Arithmetic Intensity
• Ratio of FLOPs to memory accesses (bytes)

• Relative order of Arithmetic Intensity

Performance

5 © tjELE 455/555 – Spring 2016

Parallel Processing

• Models

• Stream Benchmark

• Measures the memory performance for large data structures that do not

fit in the cache

• A good measure for our multiprocessing systems

• Measures peak memory performance

Performance

FLOP/s

Arithmetic Intensity (FLOPs/Byte)

Peak Memory BW (stream)
1:1 line through the point (1,peak BW)

Log2

Log2

6 © tjELE 455/555 – Spring 2016

Parallel Processing

• Models

• Stream Benchmark

Performance

1/2

1

1/4

2

4

8

16

64

Arithmetic Intensity - FLOPS/Byte

G
FL

O
P

/s

1 2 4 8 16 32

32

64

128

Peak memory BW = 16GB/s

Peak memory BW = 4GB/s

If your arithmetic intensity is 4 FLOPS/Byte
AND
Your peak memory BW = 4GB/s
THEN
Your potential FLOPS/s = 16GFLOPS/s

7 © tjELE 455/555 – Spring 2016

Parallel Processing

• Models

• Peak Floating Point Performance

• Processor dependent
• max clock rate

• no stalls

Performance

FLOP/s

Arithmetic Intensity (FLOPs/Byte)

Peak Floating Point Performance
(processor specs)

Log2

Log2

8 © tjELE 455/555 – Spring 2016

Parallel Processing

• Models

• Roofline Model

• Peak Memory and Floating Point performance plotted together

Performance

FLOP/s

Arithmetic Intensity (FLOPs/Byte)

Log2

Log2

Peak Floating Point Performance

9 © tjELE 455/555 – Spring 2016

Parallel Processing

• Models

• Roofline Model

• Peak Floating Point Performance vs. Arithmetic Intensity

Performance

10 © tjELE 455/555 – Spring 2016

Parallel Processing

• Example

• Opteron X2
• 2 cores

• 1 FLOP/core

• 2.2GHz

• Opteron X4
• 4 cores

• 2 FLOP/core

• 2.3GHz

• Expect 4x peak performance
• x4 has an L3 cache

Performance

11 © tjELE 455/555 – Spring 2016

Parallel Processing

• Kernel Optimizations

• Roofline is a maximum possible, you may get less

• Computational Bottlenecks

• Floating Point Operations mix
• Imbalance in Floating point instructions vs. adds

• Pipeline has balanced FP and Add structures

• Need balance to fully utilize the ALU

• Improve Instruction Level Parallelism (ILP)
• Superscalar architectures need multiple instructions to leverage multi-issue

resources

Performance

12 © tjELE 455/555 – Spring 2016

Parallel Processing

• Kernel Optimizations

• Computational Bottlenecks

• Floating Point Operations mix
• potential 2x improvement

• Improve ILP
• potential 4x improvement

• ILP first, then mix

Performance

13 © tjELE 455/555 – Spring 2016

Parallel Processing

• Kernel Optimizations

• Roofline is a maximum possible, you may get less

• Memory Bottlenecks

• Software Prefetching
• Need to predict data needs to reduce stalls

• Special instructions required to load data into the cache before it is needed

• Memory Affinity
• Leverage NUMA characteristics

• Tie threads to processor / closest memory pairs

• Try to keep a processor accesses to the lowest latency memory

Performance

14 © tjELE 455/555 – Spring 2016

Parallel Processing

• Kernel Optimizations

• Memory Bottlenecks

• Software Prefetching
• potential 50% improvement

• Memory Affinity
• potential 2.66x improvement

• Affinity first, then pre-fetching

Performance

15 © tjELE 455/555 – Spring 2016

Parallel Processing

• Kernel Optimizations

• Operating Region determines where to optimize

Performance

16 © tjELE 455/555 – Spring 2016

Parallel Processing

• Example

• Core I7

• GTX 280

Performance

17 © tjELE 455/555 – Spring 2016

Parallel Processing

• I7-960 vs. GTX280

• Double Precision FP

Performance

18 © tjELE 455/555 – Spring 2016

Parallel Processing

• I7-960 vs. GTX280

• Single Precision FP

Performance

19 © tjELE 455/555 – Spring 2016

Parallel Processing

• I7-960 vs. GTX280

Performance

Large data sets (memory BW)

Transcendentals (Native in GTX)

Scattered data

Significant single precision
Floating Point content

High synchronization demands

20 © tjELE 455/555 – Spring 2016

ELE455/555

Semester Review

Quick Review of the Semester

21 © tjELE 455/555 – Spring 2016

• ALU – Implementation

ELE 455/555

Semester Review

A

B

A
32

S[4:0]
5

D

A32

ADDn

22 © tjELE 455/555 – Spring 2016

ELE 455/555

• Datapath Control – BEQ

Semester Review

Instruction RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

LW X 0 X 0 0 0 1 0 1

23 © tjELE 455/555 – Spring 2016

ELE 455/555

• Exceptions in a Pipeline - example

Semester Review

24 © tjELE 455/555 – Spring 2016

ELE 455/555

Semester Review

V D Tag Physical Page Number

* * *

31 30 13 12 11 10 2 1 0

Vitrual Page Number Page Offset

Address Data

Page Table 1

Page Table 2
29 28 13 12 11 10 2 1 0

Physical Address Tag Cache Index
Block

Offset

Byte

Offset

Physical Page Number Page Offset

V Tag Data 15 Data 14 Data 1 Data 0

* * *

* * *

* * * * * *

Main Memory

Block Mux

=
=
=

=
=
=

TLB Hit

TLB Miss &
Page Table Hit

Secondary
Memory

Page
Fault

PROCESSOR

SWAP

25 © tjELE 455/555 – Spring 2016

ELE 455/555

• Cortex A8

Semester Review

5 stages to detect and avoid hazards, create packets

aggressive address (branch) prediction

gives decoder lots of options

full bypassing of dependencies

can come from either issue

must come from specified issue

6 stages EX WB

26 © tjELE 455/555 – Spring 2016

ELE 455/555

• Nvidia Kepler

• 192 cores

Semester Review

27 © tjELE 455/555 – Spring 2016

ELE 455/555

Semester Review

28 © tjELE 455/555 – Spring 2016

ELE 455/555

Semester Review

29 © tjELE 455/555 – Spring 2016

ELE 455/555

Semester Review

30 © tjELE 455/555 – Spring 2016

ELE 455/555

Semester Review

http://images.anandtech.com/reviews/cpu/intel/SNBE/Core_I7_LGA_2011_Die.jpg
http://images.anandtech.com/reviews/cpu/intel/SNBE/Core_I7_LGA_2011_Die.jpg

